Preprint
Article

Quantum Probability's Algebraic Origin

Altmetrics

Downloads

161

Views

125

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

17 September 2020

Posted:

20 September 2020

You are already at the latest version

Alerts
Abstract
Max Born's statistical interpretation made probabilities play a major role in quantum theory. Here we show that these quantum probabilities and the classical probabilities have very different origins. While the lat- ter always result from an assumed probability measure, the first include transition probabilities with a purely algebraic origin. Moreover, the gen- eral definition of transition probability introduced here comprises not only the well-known quantum mechanical transition probabilities between pure states or wave functions, but further novel cases. A transition probability that differs from 0 and 1 manifests the typical quantum indeterminacy in a similar way as Heisenberg's and others' un- certainty relations and, furthermore, rules out deterministic states in the same way as the Bell-Kochen-Specker theorem. However, the transition probability defined here achieves a lot more beyond that: it demonstrates that the algebraic structure of the Hilbert space quantum logic dictates the precise values of certain probabilities and it provides an unexpected access to these quantum probabilities that does not rely on states or wave functions.
Keywords: 
Subject: Physical Sciences  -   Quantum Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated