Preprint
Article

Polyadic Braid Operators and Higher Braiding Gates

Altmetrics

Downloads

130

Views

279

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

09 July 2021

Posted:

12 July 2021

You are already at the latest version

Alerts
Abstract
A new kind of quantum gates, higher braiding gates, as matrix solutions of the polyadic braid equations (different from the generalized Yang-Baxter equations) is introduced. Such gates lead to another special multiqubit entanglement which can speed up key distribution and accelerate algorithms. Ternary braiding gates acting on three qubit states are studied in details. We also consider exotic noninvertible gates which can be related with qubit loss, and define partial identities (which can be orthogonal), partial unitarity, and partially bounded operators (which can be noninvertible). We define two classes of matrices, star and circle ones, such that the magic matrices (connected with the Cartan decomposition) belong to the star class. The general algebraic structure of the introduced classes is described in terms of semigroups, ternary and $5$-ary groups and modules. The higher braid group and its representation by the higher braid operators are given. Finally, we show, that for each multiqubit state there exist higher braiding gates which are not entangling, and the concrete conditions to be non-entangling are given for the obtained binary and ternary gates.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated