Preprint
Article

Artificial Neuron-based Model for a Hybrid Real-Time System: Induction Motor Case Study

Altmetrics

Downloads

212

Views

206

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

23 May 2022

Posted:

25 May 2022

You are already at the latest version

Alerts
Abstract
A correct system design can be systematically obtained from a specification model of a real-time system that integrates hybrid measurements in a realistic industrial environment, this has been carried out through complete Matlab / Simulink / Stateflow models. However, there is a widespread interest in carrying out that modeling by resorting to Machine Learning models, which can be understood as Automated Machine Learning for Real-time systems that present some degree of hybridization. An induction motor controller which must be able to maintain a constant air flow through a filter is one of these systems and it is discussed in the paper as a study case of closed-loop control system. The article discusses a practical application of ML methods that demonstrates how to replace such closed loop in industrial control systems with a Simulink block generated from neural networks to show how the proposed procedure can be applied to derive complete hybrid system designs with artificial neural networks (ANN). In the proposed ANN-based method to design a real-time hybrid system with continuous and discrete components, we use a typical design of a neural network, in which we define the usual phases: training, validation, and testing. The generated output of the model is made up of reference variables values of the cyber-physical system, which represent the functional and dynamic aspects of model. They are used to feed Simulink/Stateflow blocks in the real target system.
Keywords: 
Subject: Computer Science and Mathematics  -   Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated