Review of High Temperature Ceramics for Aerospace Applications

Article Preview

Abstract:

This paper presents a review of high temperature ceramics research for aerospace applications. Following a brief historical perspective, the paper reviews the effort to toughen ceramics for high temperature structural applications. These include: efforts to toughen zirconia-based ceramics, aluminum oxide, silicon carbide, silicon nitride, molybdenum disilicide and zirconium diborides and carbon-based composites. The development of thermal protection systems is also reviewed within the context of thermal barrier coatings (TBCs) and thermal protection systems for space vehicles. The paper concludes with a final section in which the implications of the results are then discussed for the thermostructural applications of ceramics in aerospace structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-407

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. G. Evans, Ceramics and Ceramic Composites as High-Temperature Structural Materials: Challenges and Opportunities, Philos. Trans. R. Soc. London, Ser. A, 315, pp.511-525, (1995).

Google Scholar

[2] A. G. Evans and A. H. Heuer, Review—Transformation Toughening in Ceramics: Martensitic Transformations in Crack-Tip Stress Fields, J. Am. Ceram. Soc., 63 p.241– 48, (1980).

DOI: 10.1111/j.1151-2916.1980.tb10712.x

Google Scholar

[3] M. Rühle, A.G. Evans, R.M. McMeeking and P.G. Charalambides and J. W. Hutchinson, Micro-crack Toughening In Alumina/Zirconia, Acta Metall. Vol. 35. No 11 pp.2701-2710, (1987).

DOI: 10.1016/0001-6160(87)90269-0

Google Scholar

[4] M. Rühle, N. Claussen and A. H. Heuer, Transformation and Microcrack Toughening as Complementary Processes in Zr02-Toughened AI2O3, J. Am. Ceram. Soc, 69, pp.195-197, (1986).

DOI: 10.1111/j.1151-2916.1986.tb07405.x

Google Scholar

[5] S. Fu¨nfschilling, T. Fett, M.J. Hoffmann, R. Oberacker, T. Schwind, J. Wippler,T. Bo¨hlke, H. O¨zcoban, G.A. Schneider, P.F. Becher, J.J. Kruzic Mechanisms of toughening in silicon nitrides: The roles of crack bridging and microstructure, Acta Materialia 59, p.3978–3989, (2011).

DOI: 10.1016/j.actamat.2011.03.023

Google Scholar

[6] A. Rezaire, Fahrenholtz, W. G., & G. E. Hilmas, Evolution of structure zirconium diboride–silicon carbide in air up to 1500°C, Journal of the European Ceramic Society, Vol. 27, No. 6, pp.2495-2501, (2007).

DOI: 10.1016/j.jeurceramsoc.2006.10.012

Google Scholar

[7] Monteverde, F., Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2, Applied Physics A: Materials Science & Processing, Vol. 82, No. 2, pp.329-337, (2006).

DOI: 10.1007/s00339-005-3327-9

Google Scholar

[8] Heuer, A. H. and V. L. K. Lou, Volatility diagrams for silica, silicon nitride, and silicon carbide and their application to high temperature decomposition and oxidation, Journal of Am. Ceram. Soc, Vol. 73, No. 10, p.2785–3128, (1990).

DOI: 10.1111/j.1151-2916.1990.tb06677.x

Google Scholar

[9] Wole Soboyejo, Douglas Brooks and Long-Ching Chen, Transformation Toughening and Fracture Behavior of Molybdenum Disilicide Composites Reinforced with Partially Stabilized Zirconia, Journal of Am. Ceram. Soc, Vol. 78, No. 6, pp.1481-88, (1995).

DOI: 10.1111/j.1151-2916.1995.tb08841.x

Google Scholar

[10] T. C. Lu, A. G. Evans, R. J. Hecht, and R. Mehrabian, Toughening of MoSi2, with a Ductile (Niobium) Reinforcement, Acta Metall. Muter., 39, (1991).

DOI: 10.1016/0956-7151(91)90154-s

Google Scholar

[11] E. Ryshkewitch, Oxide Ceramics: Physical Chemistry and Technology, p.350–396. Academic Press, New York, (1960).

Google Scholar

[12] A. H. Heuer, Transformation Toughening in ZrO2 -Containing Ceramics, Journal of Am. Ceram. Soc., Vol. 70, No. 10, p.689 –698, (1987).

DOI: 10.1111/j.1151-2916.1987.tb04865.x

Google Scholar

[13] F. Monteverde, S. Guicciardi and A. Bellosi , Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Material Science and Engineering, Vol. 346, No. 1-2, pp.310-319, (2003).

DOI: 10.1016/s0921-5093(02)00520-8

Google Scholar

[14] A. Chamberlain, W. Fahrenholtz and G. Hilmas, High-strength zirconium diboride based ceramics, Journal of Am. Ceram. Soc, Vol. 87, No. 6, 1170-1172, (2004).

DOI: 10.1111/j.1551-2916.2004.01170.x

Google Scholar

[15] M. M. Opeka, I. G. Talmy, and J. A. Zaykoski, Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: theoretical considerations and historical experience, Journal of Materials Science, Vol. 39, No. 19, p.5887–5904, (2004).

DOI: 10.1023/b:jmsc.0000041686.21788.77

Google Scholar

[16] T. A. Parthasarathy, R. A. Rapp, M. Opeka and R. J. Kerans: Effects of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2, J. Am. Ceram. Soc. , Vol. 92, No. 5, p.1079–1086, (2009).

DOI: 10.1111/j.1551-2916.2009.03031.x

Google Scholar

[17] T. Chang, C. Mercer, M. Walter, and W.O. Soboyejo, An investigation of the effects of Isothermal Exposure on micro-structural evolution and oxidation in a thermal barrier coating, Key Engineering Materials, Vol. 197, pp.185-198, (2001).

DOI: 10.4028/www.scientific.net/kem.197.185

Google Scholar

[18] D.R. Mumm and A.G. Evans, Mechanisms controlling the performance and durability of thermal barrier coatings, Key Engineering Materials, Vol. 197, pp.199-230, (2001).

DOI: 10.4028/www.scientific.net/kem.197.199

Google Scholar

[19] D. J. Rasky, J. Salute, J. P. Kolodzie and J. Bull, The NASA Sharp Flight Experiment, Proceedings of the 3rd European Workshop on Thermal Protection Systems, Noordwijk, The Netherlands, 25-27 March (1998).

Google Scholar

[20] T. Reimer and T. Laux, Thermal and Mechanical Design of the EXPERT C/C-SiC Nose, 5th European Workshop on Thermal Protection Systems and Hot Structures, Noordwijk, The Netherlands, 17-19 May (2006).

Google Scholar

[21] C. A. Snyder, Thrust Augmentation Options for the Beta II Two-stage-to-Orbit Vehicles, Technical report submitted to AIAA Aircraft Design-system Operations meeting, Monterey, California, August 11-13, (1993).

DOI: 10.2514/6.1993-4014

Google Scholar

[22] J. L. Hall, Columbia and Challenger: Organizational failure at NASA,; Space Policy 19, pp.239-247, (2003).

DOI: 10.1016/j.spacepol.2003.08.013

Google Scholar

[23] R. A. Miller, Thermal Barrier Coatings for Aircraft Engines – History and Directions, Thermal Barrier Coating Workshop, NASA CP 3312, p.17, (1995).

Google Scholar

[24] T. S. Srivatsan, M. Strangwood and W. O. Soboyejo, Fracture Behavior of a Gamma Titanium Aluminide Intermetallics, J. of Materials Science, Vol. 31, pp.2193-2198, (1996).

DOI: 10.1007/bf00356645

Google Scholar

[25] Tolpygo V.K., Clarke D.R., Wrinkling of α-alumina films grown by thermal oxidation-I. Quantitative studies on single crystals of Fe-Cr-Al alloy, Acta Materialia, Vol. 46, No. 14, pp.5153-5166, (1998).

DOI: 10.1016/s1359-6454(98)00133-5

Google Scholar

[26] Tolpygo V.K., Clarke D.R., Competition Between Stress Generation and Relaxation During Oxidation of a Fe-Cr-Al-Y Alloy, Oxidation of Metals, Vol. 49, No 1-2, pp.187-211, (1998).

Google Scholar

[27] D. R. Mumm and A. G. Evans, On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition, Acta Materialia, Vol. 48, No. 8, p.1815–1827, (2000).

DOI: 10.1016/s1359-6454(99)00473-5

Google Scholar

[28] W. O. Soboyejo and K. Lou, Grain Boundary Segregation and Intergranular Fracture in a Gamma-Based Titanium Aluminide Intermetallic, Scripta Metallurgica et Materialia, Vol. 29, pp.1335-1339, (1993).

DOI: 10.1016/0956-716x(93)90134-e

Google Scholar

[29] S. Bose and J. DeMasi-Marci and D. K. Marcin, Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney, Thermal Barrier Coating Workshop, NASA CP 3312, p.63, (1995).

DOI: 10.1007/bf02646318

Google Scholar

[30] N. M. Yanar, M. J. Stiger, M. Maris-Sida, F. S. Pettit and G. H. Meier, The effects of high temperature exposure on the Durability of Thermal Barrier Coatings, Key Engineering Materials Vol. 197, pp.145-164, (2001).

DOI: 10.4028/www.scientific.net/kem.197.145

Google Scholar

[31] W. O. Soboyejo, P. Mensah, R. Diwan, J. Crowe and S. Akwaboa, High Temperature Oxidation Interfacial Growth Kinetics in YSZ Thermal Barrier Coatings With Bond Coatings of NiCoCrAlY With 0. 25% Hf, Materials Science and Engineering A, Vol. 528, pp.2223-2230, (2011).

DOI: 10.1016/j.msea.2010.11.066

Google Scholar

[32] R. A Handoko, J. L. Beuth, G.H. Meier, F.S. Pettit and M.J. Stiger, Mechanisms for Interfacial Toughness Loss in Thermal Barrier Coating Systems, Key Engineering Materials, Vol. 197, pp.165-184, (2001).

DOI: 10.4028/www.scientific.net/kem.197.165

Google Scholar

[33] A.M. Karlsson , T. Xu and A.G. Evans, The effect of the thermal barrier coating on the displacement instability in thermal barrier systems, Acta Materialia 50, p.1211–1218, (2002).

Google Scholar

[34] J. F. Knott, Mechanics of Fracture, R. M. Latanision and J. Pickens (eds. ), Atomistics of Fracture, Plenum, p.209, (1983).

Google Scholar

[35] J. F. Knott, in R. M. Latanision and R. H. Jones (eds. ), Chemistry and Physics of Fracture, Martinus Nijhoff, Dordrecht, p.44, (1987).

Google Scholar

[36] M. Huang, Z. Suo, Q. Ma and H. Fujimoto, Thin film cracking and ratcheting caused by temperature cycling, Journal of Materials Research, Vol. 15, p.1239–1242, (2000).

DOI: 10.1557/jmr.2000.0177

Google Scholar

[37] W. O. Soboyejo and T.S. Srivatsan, Advanced Structural Materials: Properties, Design Optimization, and Applications, CRC Press, Boca Ration, FL, (2006).

Google Scholar

[38] J. Antonenko, M. Muller, The 4th European Workshop on Thermal Protection Systems and Hot Structures, Noordwijk, The Netherlands, 26-29 November 2002, Palermo, Italy, ESA Publications Division, ESTEC, Noordwijk, The Netherlands.

Google Scholar

[39] M. Dogigli, D. Sabath, J. -P. Kemper CMC Components for Future RLV,. The 4th European Workshop on Hot Structures and Thermal Protection Systems for Space Vehicles, ESA, SP-521, 26-29 November 2002, Palermo, Italy.

Google Scholar

[40] W. Fischer, Metallic Thermal Protection Systems for future RLV's - Concept Studies and Material Investigations, SAE Technical Paper, (2002).

DOI: 10.4271/2002-01-2548

Google Scholar

[41] T. Pichon, R. Barreteau, P. Soyris, A. Foucault, J.M. Parenteau, Y. Prel, S. Guedron, CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests, Acta Astronautica, Vol. 65, p.165–176, (2009).

DOI: 10.1016/j.actaastro.2009.01.035

Google Scholar

[42] Y. Caogen, L. Hongjun, J. Zhonghua, J. Xinchao, L. Yan, L. Haigang, A study on metallic thermal protection system panel for Reusable Launch Vehicle, Acta Astronautica, Vol. 63, p.280–284, (2008).

DOI: 10.1016/j.actaastro.2007.12.059

Google Scholar

[43] F. Leleu, P. Watillon, J. Moulin, A. Lacombe, and P. Soyris, The thermo-mechanical architecture and TPS configuration of the pre-X vehicle, Acta Astronautica, Vol. 56, p.453–464, (2005).

DOI: 10.1016/j.actaastro.2004.05.073

Google Scholar

[44] T. Pichon, R. Barreteau, P. Soyris, A. Foucault, J.M. Parenteau, Y. Prel, S. Guedron, CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests, Acta Astronautica, Vol. 65, p.165–176, (2009).

DOI: 10.1016/j.actaastro.2009.01.035

Google Scholar

[45] A. S. Filatyev, V. Buzuluk, O. Yanova, N. Ryabukha, A. Petrov, Advanced aviation technology for reusable launch vehicle improvement, Acta Astronautica, Vol. 100, p.11–21, (2014).

DOI: 10.1016/j.actaastro.2014.03.007

Google Scholar

[46] S. Safi, A. Kazemzadeh, MCMB–SiC composites; new class high-temperature structural materials for aerospace applications, Ceramics International, Vol. 39, p.81–86, (2013).

DOI: 10.1016/j.ceramint.2012.05.098

Google Scholar

[47] A.G. Evans, High toughness ceramics, Materials Science and Engineering: A, Volumes 105–106, Part 1, p.65–75, (1988).

Google Scholar

[48] M. Rühle, A.G. Evans, High toughness ceramics and ceramic composites, Progress in Materials Science, Vol. 33, p.85–167, (1989).

DOI: 10.1016/0079-6425(89)90005-4

Google Scholar

[49] A. E. Pasto, Synthesis/Processing of Silicon Nitride Ceramics, Comprehensive Hard Materials, Vol. 2, p.73–88, (2014).

DOI: 10.1016/b978-0-08-096527-7.00022-2

Google Scholar

[50] E. Sánchez-González, P. Miranda, F. Guiberteau and A. Pajares, Effect of temperature on the pre-creep mechanical properties of silicon nitride, Journal of the European Ceramic Society, Vol. 29, p.2635–2641, (2009).

DOI: 10.1016/j.jeurceramsoc.2009.03.011

Google Scholar

[51] M. Rühle, A.G. Evans, High toughness ceramics and ceramic composites, Progress in Materials Science, Vol. 33, p.85–167, (1989).

DOI: 10.1016/0079-6425(89)90005-4

Google Scholar

[52] M. Rühle, Microcrack and transformation toughening of zirconia-containing alumina, Materials Science and Engineering: A, Vol. 105–106, p.77–82, (1988).

DOI: 10.1016/0025-5416(88)90482-x

Google Scholar

[53] M. Rühle, A. G. Evans, R. M. McMeeking, P. G. Charalambides, J. W. Hutchinson, Microcrack toughening in alumina/zirconia, Acta Metallurgica Vol. 35, p.2701–2710, (1987).

DOI: 10.1016/0001-6160(87)90269-0

Google Scholar

[54] R. C. Garvie, R. H. Hannink and R. T. Pascoe, Ceramic steel, Nature 258, pp.703-704, (1975).

DOI: 10.1038/258703a0

Google Scholar

[55] D. R. Bloyer, K. T. Venkateswara Rao and R.O. Ritchie, Resistance-curve toughening in ductile/brittle layered structures: behavior in Nb/Nb3 Al laminates, Materials Science and Engineering, (1996).

DOI: 10.1016/0921-5093(96)10391-9

Google Scholar

[56] D. Ding, Processing, properties and applications of ceramic matrix composites, SiC/SiC: an overview, Advances in Ceramic Matrix Composites, p.9–26, (2014).

DOI: 10.1533/9780857098825.1.9

Google Scholar

[57] I.M. Low, Advances in ceramic matrix composites: an introduction, Advances in Ceramic Matrix Composites, p.1–6, (2014).

DOI: 10.1533/9780857098825.1

Google Scholar

[58] S. P. Rawal, Multifunctional Composite Materials and Structures, Comprehensive Composite Materials, Vol. 6, pp.67-86, (2000).

DOI: 10.1016/b0-08-042993-9/00186-8

Google Scholar

[59] R. F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures, Composite Structures, Vol. 92, p.2793–2810, (2010).

DOI: 10.1016/j.compstruct.2010.05.003

Google Scholar

[60] C.G. Papakonstantinou, P. Balaguru, R.E. Lyon, Comparative study of high temperature composites, Composites Part B: Engineering, Vol. 32, p.637–649, (2001).

DOI: 10.1016/s1359-8368(01)00042-7

Google Scholar

[61] K. H. Pfeiffer, K. Peetz, 53rd International Astronautical Congress, IAC -02 1. 3. 02, Houston, Texas, USA, IAC-02-1. 6. b. 01, 10-19 October (2002).

Google Scholar

[62] R. O. Ritchie, Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Crack-Tip Shielding, Materials Science and Engineering, Vol. 103, pp.15-28, (1988).

DOI: 10.1016/0025-5416(88)90547-2

Google Scholar

[63] R. O. Ritchie, Mechanisms of fatigue-crack propagation in ductile and brittle solids, International Journal of Fracture, Vol. 100, No. 1, pp.55-83, (1999).

Google Scholar

[64] R.K. Nalla, J.S. Stölken, J.H. Kinney and R.O. Ritchie, Fracture in human cortical bone: local fracture criteria and toughening mechanisms, Journal of Biomechanics Vol. 38, p.1517–1525, (2005).

DOI: 10.1016/j.jbiomech.2004.07.010

Google Scholar

[65] W. O. Soboyejo, Mechanical Properties of Engineering Materials, Marcel Dekker, New York, NY, p.1 – 583, (2002).

Google Scholar

[66] C. H. Nguyen, K. Chandrashekhara and V. Birman, Multifunctional thermal coatings in aerospace sandwich panels, Mechanics Research Communications, Vol. 39, pp.35-43, (2012).

DOI: 10.1016/j.mechrescom.2011.10.003

Google Scholar

[65] W. O. Soboyejo, Mechanical Properties of Engineering Materials, Marcel Dekker, New York, NY, p.1 – 583, (2002).

Google Scholar

[67] Yirong Lin, Henry A. Sodano, Concept and model of a piezoelectric structural fiber for multifunctional composites, Composites Science and Technology, Vol. 68, p.1911–1918, (2008).

DOI: 10.1016/j.compscitech.2007.12.017

Google Scholar

[68] Jinlian Hu, Yong Zhu, Huahua Huang, Jing Lu, Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications, Progress in Polymer Science Vol. 37, p.1720–1763, (2012).

DOI: 10.1016/j.progpolymsci.2012.06.001

Google Scholar

[69] Haibao Lu, Wei Min Huang, Jisong Leng, A phenomenoloical model for simulating the chemo-responsive shape memory effect in polymers undergoing a premeation transition, Smart materials and Structures, Vol. 23, (2014).

DOI: 10.1088/0964-1726/23/4/045038

Google Scholar

[70] Haibou Lu, Yanju Liu, Jihua Gou, Jinsong Leng, Shanju Du, Electrical properties and shape memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape memory polymer, Smart materials and Structures, Vol. 19, (2010).

DOI: 10.1088/0964-1726/19/7/075021

Google Scholar

[71] Haibou Lu, Fei Lang, Yongtao Yao, Jihua Gou, David Hui, Self assembled multi-layered carbon nanopaper for significantly improving electrical actuation of shape memory polymer nanocomposite, Composite: Part B, Vol. 59, pp.191-195, (2014).

DOI: 10.1016/j.compositesb.2013.12.009

Google Scholar

[72] Ronald F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures, Composite Structures, Vol. 92, p.2793–2810, (2010).

DOI: 10.1016/j.compstruct.2010.05.003

Google Scholar

[73] Ahmed K. Noor, Samuel L. Venneri, Donald B. Paul, Mark A. Hopkins, Structures technology for future aerospace systems, Computers & Structures, Vol. 74, p.507–519, (2000).

DOI: 10.1016/s0045-7949(99)00067-x

Google Scholar

[74] Bliss T. K., Iwasaki T., Bart-Smart H., CPG control of a tensegrity morphing structure for biomimetic applications, Advances in Science and Technolgy, Vol. 58, pp.137-142, (2008).

Google Scholar

[75] Moored K. W., Bart-Smith H., The analysis of tensegrity structures for the design of a morphing wing, Journal of Applied Mechanics, Vol. 74, pp.668-676, (2007).

DOI: 10.1115/1.2424718

Google Scholar

[76] Haydn N. G. Wadley, Cellular Metals Manufacturing, Advanced Engineering Materials, No. 10, (2002).

Google Scholar

[77] Dana M. Elzey, Aarash Y. N. Sofla, Haydn N. G. Wadley, A shape memory-based multifunctional structural actuator panel, International Journal of Solids and Structures, Vol. 42, p.1943–1955, (2005).

DOI: 10.1016/j.ijsolstr.2004.05.034

Google Scholar

[78] W. AKI, S. Poh, A. Baz, "Wireless and distributed sensing of the shape of morphing structures, Sensors and Actuators A: Physical, Vol. 140, pp.94-102, (2007).

DOI: 10.1016/j.sna.2007.06.026

Google Scholar

[79] Christopher N. Bowmah, Smart shape changing and shape morphing polymeric materials, Polymer, Vol. 55, pp.5847-5848, (2014).

DOI: 10.1016/j.polymer.2014.09.058

Google Scholar

[80] A. Y. N Sofla, S. A. Meguid, K. T. Tan, W. K. Yeo, "Shape morphing of aircraft wing: Status and challenges, Materials & Design, Vol. 31, pp.1284-1292, (2010).

DOI: 10.1016/j.matdes.2009.09.011

Google Scholar

[81] Wang Y. G, Wang Y. R, Hosono E, Wang K. X, Zhou H. S, The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method, Angew. Chem. Int. Ed. 47: pp.7461-7465, (2008).

DOI: 10.1002/anie.200802539

Google Scholar

[82] Han-Jung Kim, Sang Eon Lee, Jihye Lee, Joo-Yun Jung, Eung-Sug Lee, Jun-Hyuk Choi, Jun-Ho Jung, Minsub Oh, Seungmin Hyun, Dae-Geun Choi, Gold-coated silicon nanowire–graphene core–shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries, Physica E: Low-dimensional Systems and Nanostructures, Vol. 61, pp.204-209, (2014).

DOI: 10.1016/j.physe.2014.03.030

Google Scholar

[83] Q.Q. Xiong, Y. Lu, X. L. Wang, C. D. Gu, Y. Q. Qiao, J. P. Tu, Improved electrochemical performance of porous Fe3O4/carbon core/shell nanorods as an anode for lithium-ion batteries, Journal of Alloys and Compounds, Vol. 526, pp.219-225, (2012).

DOI: 10.1016/j.jallcom.2012.05.034

Google Scholar

[84] Zhang X., Chung M., Kim H., Wang C. -W., and Sastry, A. M., Part IV: Mechanics of Battery Cells and Materials, Handbook of Battey Materials, 2nd edition, C. Daniel and J.O. Besenhard, Eds., pp.877-904, (2011).

DOI: 10.1002/9783527637188.ch26

Google Scholar

[85] Park M., Zhang X., Chung M., Less G.B., and Sastry, A. M., A review of conduction phenomena in Li-ion batteries, Journal of Power Sources, Vol. 195, pp.7904-7929, (2010).

DOI: 10.1016/j.jpowsour.2010.06.060

Google Scholar

[86] Du W., Gupta A., Zhang X., Sastry, A. M., Shyy, W., Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance, International Journal of Heat and Mass Transfer, Vol. 53, pp.3552-3561, (2010).

DOI: 10.1016/j.ijheatmasstransfer.2010.04.017

Google Scholar

[87] Chen Y. H., Bakrania S. D., Wooldridge M. S., and Sastry A. M., Image analysis and computer simulation of nanoparticle clusturing in combustion systems, " Aerosol Science and Technology, Vol. 44, pp.83-95, (2010).

DOI: 10.1080/02786820903390380

Google Scholar

[88] R. J. Lancaster, W. J. Harrison, G. Norton, An analysis of small punch creep behaviour in the γ titanium aluminide Ti-45Al-2Mn-2Nb, Materials Science and Engineering: A, (2014).

DOI: 10.1016/j.msea.2014.12.045

Google Scholar

[89] Ali El-Chaikh, Thomas K. Heckel, Hans-J. Christ, Thermomechanical fatigue of titanium aluminides, International Journal of Fatigue, Vol. 53, pp.26-32, (2013).

DOI: 10.1016/j.ijfatigue.2011.08.005

Google Scholar

[90] Z. Abdallah, M.T. Whittaker, M.R. Bache, High temperature creep behaviour in the γ titanium aluminide Ti–45Al–2Mn–2Nb, Intermetallics, Vol. 38, pp.55-62, (2013).

DOI: 10.1016/j.intermet.2013.02.003

Google Scholar

[91] Raluca Pflumm, Alexander Donchev, Svea Mayer, Helmut Clemens, Michael Schütze, High-temperature oxidation behavior of multi-phase Mo-containing γ-TiAl-based alloys, Intermetallics Vol. 53, pp.45-55, (2014).

DOI: 10.1016/j.intermet.2014.04.010

Google Scholar

[92] Sawyer J. W., Hodge J., and Moore B., Aerothermal Test of Metallic TPS for X-33 Reusable Launch Vehicle, NASA Technical report, NASA Langley Research Center, USA, (1998).

Google Scholar

[93] M. Dogigli, D. Sabath, J. -P. Kemper CMC Components for Future RLV,. The 4th European Workshop on Hot Structures and Thermal Protection Systems for Space Vehicles, ESA, SP-521, 26-29 November 2002, Palermo, Italy.

Google Scholar