The Effect of Niobium on In Situ Synthesis of Titanium Carbide in Composite Hardfacings

Article Preview

Abstract:

Niobium (Nb) and titanium (Ti) react with carbon to form high-melting-point and high-hardness MC-type carbides. This study explores the in-situ synthesis of mixed NbC-TiC carbides during plasma transferred arc welding of a steel-based hardfacing. Feedstock powders consisted of stainless steel AISI 316L, TiO2, and graphite with and without 5 wt.% Nb addition. Feedstock powders were ball milled for 72 hours, then mixed with paraffine and pre-placed on the S235 steel. The cladding current was 125 A, and the plasma torch travel velocity was 1 mm/s and 0.7 mm/s. The effect of Nb on TiC generation was examined using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS). Vickers hardness was also measured at the surface of hardfacings. Results show that previously formed NbC grains acted as nucleation sites for TiC precipitation. Increased torch velocity has resulted in improving distribution and decreasing agglomeration of carbon phases. Hardness tests showed that Nb and Ti increased the hardness resistance of the substrate steel.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1104)

Pages:

55-60

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.R. Garbade, N.B. Dhokey, Overview on hardfacing processes, materials and applications, IOP Conf. Ser. Mater. Sci. Eng. 1017(1) (2021) 0-9

DOI: 10.1088/1757-899X/1017/1/012033

Google Scholar

[2] M. Zemlik, Ł. Konat, J. Napiórkowski, Comparative analysis of the influence of chemical composition and microstructure on the abrasive wear of high-strength steels, Mater. 15(14) (2022) 5083

DOI: 10.3390/MA15145083

Google Scholar

[3] M. Zhang, M. Li, J. Chi, S. Wang, L. Ren, M. Fang, Microstructure and tribology properties of in-situ MC(M:Ti,Nb) coatings prepared via PTA technology, Vacuum, 160 (2019) 264-271

DOI: 10.1016/j.vacuum.2018.11.035

Google Scholar

[4] J. Lei Zhu, L. Sheng Zhong, Y. Hua Xu, S. Xiong Zhang, Z. Xin Lu, The investigation on the fabrication and microstructure of NbTi-(NbTi)C Fe-based composite, Vacuum, 168, (2019) 108862

DOI: 10.1016/j.vacuum.2019.108862

Google Scholar

[5] S. Corujeira Gallo, N. Alam, R. O'Donnell, In-situ synthesis of titanium carbides in iron alloys using plasma transferred arc welding, Surf. Coat. Technol. 225 (2013) 79-84

DOI: 10.1016/j.surfcoat.2013.03.019

Google Scholar

[6] J. Kübarsepp, K. Juhani, "Cermets with Fe-alloy binder: A review," Int J Refract Hard Met. 92 (2020) 105290.

DOI: 10.1016/j.ijrmhm.2020.105290

Google Scholar

[7] T. Zhao, S. Zhang, F.Q. Zhou, H.F. Zhang, C.H. Zhang, J. Chen, Microstructure evolution and properties of in-situ TiC reinforced titanium matrix composites coating by plasma transferred arc welding (PTAW), Surf. Coat. Technol. 424 (2021) 127637

DOI: 10.1016/J.SURFCOAT.2021.127637

Google Scholar

[8] P. Kulu, A. Surzhenkov, R. Tarbe, M. Saarna, M. Tarraste, Hardfacings for extreme wear applications, Surf. Modif. Technol. (2015) 9.

Google Scholar

[9] M. Zhang, M. Li, S. Wang, J. Chi, L. Ren, M. Fang, C. Zhou, Enhanced wear resistance and new insight into microstructure evolution of in-situ (Ti,Nb)C reinforced 316 L stainless steel matrix prepared via laser cladding, Opt. Lasers Eng. 128 (2020) 106043

DOI: 10.1016/J.OPTLASENG.2020.106043

Google Scholar

[10] C. Zhao, X. Xing, J. Guo, Z. Shi, Y. Zhou, X Ren, Q. Yang, Microstructure and wear resistance of (Nb,Ti)C carbide reinforced Fe matrix coating with different Ti contents and interfacial properties of (Nb,Ti)C/α-Fe, Appl. Surf. Sci. 494 (2019) 600-609

DOI: 10.1016/J.APSUSC.2019.07.209

Google Scholar

[11] K. Yang, K. Yang, Y.F. Bao, Y.F. Jiang, Formation mechanism of titanium and niobium carbides in hardfacing alloy, Rare Met. 36(8) (2017) 640-644

DOI: 10.1007/s12598-016-0777-5

Google Scholar