SlideShare a Scribd company logo
GUJARAT POWER ENGINEERING 
AND 
RESEARCH INSTITUTE 
ADVANCED 
ENGINEERING 
MATHEMATICS 
FOURIER SERIES
GROUP MEMBERS 
 Pinky Chaudhari (131040109006) 
 Harwinder Kaur(131040109015) 
 Vibha Patel (131040109044) 
 Samia Zehra (131040109052) 
 Guided By : Prof. Nirav S. Modi
INDEX 
 Fourier Series 
 General Fourier 
 Discontinuous Functions 
 Change Of Interval Method 
 Even And Odd Functions 
 Half Range Fourier Cosine & Sine Series
FOURIER SERIES 
 A Fourier series is an expansion of a periodic 
function in terms of an infinite sum 
of sines and cosines.
General Formula For Fourier 
Series 
Where,
Formulas To Solve Examples 
 2SC = S + S 
 2CS = S – S 
 2CC = C + C 
 2SS = cos(α-β) –cos(α+β) 
 Even*Odd = Odd 
 Even*Even = Even 
 Odd*Odd = Even 
 Odd*Even = Odd
uv  uv1 u 'v2 u''v3 u'''v4  ________ 
Where, 
u, u’, u”, u’’’,_ _ _ _ are denoted by derivatives. 
And 
V1,v2,v3,v4,_ _ _ _ _ are denoted by integral.
Discontinuous Type Functions 
 In the interval 
C  X C2 
f x C x x 
f x x x C  
   
    
( ), 
( ), 2 
1 0 
2 0 
f(x) 
 The function is discontinuous at x =x0 
f x f x 
0 0 
0 
( 0) ( 0) 
( ) 
2 
f x 
   

So Fourier series formula is 
x C 
0 
2 
 
a f x dx f x dx 
  
0 1 2 
0 
1 
( ) ( ) 
C x 
 
     
    
  
x C 
0 
2 
 
a f x nx dx f x nx dx 
  
1 2 
0 
x C 
0 
2 
 
b f x nx dx f x nx dx 
  
1 2 
0 
1 
( )*sin( ) ( )*sin( ) 
n 
C x 
 
     
    
  
1 
( )*cos( ) ( )*cos( ) 
n 
C x 
 
     
    
 
Change Of Interval Method 
 In this method , function has period P=2L , 
where L is any integer number. 
 In interval 0<x<2L Then l = L/2 
 When interval starts from 0 then l = L/2 
 In the interval –L < X < L Then l = L 
 For discontinuous function , Take l = C where 
C is constant.
 General Fourier series formula in interval 
C  x C 2L 
   
a n x n x 
f x a b 
( ) cos( ) sin( ) 
2 n n 
a f x dx 
C L 
2 
2 1 
    
   
 
2 1 
( )*cos( ) 
    
  ( )*sin( ) 
 
C L 
n 
 
C 
n x 
b f x dx 
l l 
  
n 
C 
n x 
a f x dx 
l l 
  
0 
1 
( ) 
C L 
C 
l 
 
  
0 
1 
n 
l l 
 
  
     
  
 
Where,
Even Function 
f (x)  f (x) 
 The graph of even function is symmetrical 
about Y – axis. 
 Examples : 
2 2 x , x ,cos x, x cos x, xsin x
Fourier series for even function 
1. In the interval   x  
  0 
 
( )   
cos( ) 
1 
0 
 
 
0 
2 
 
 
0 
2 
n 
( ) 
 
2 
n 
( )*cos( ) 
n 
a 
f x a nx 
a f x dx 
a f x nx dx 
 
 
 
 
  
   
 
Fourier series for even function 
(conti.) 
2. In the interval l  x  l 
0 
 
 
  
 
( ) cos( ) 
    
 
1 
0 
 
0 
2 
 
0 
2 
n 
( ) 
2 
n 
  
 
( )*cos( ) 
l 
l 
n 
a n x 
f x a 
l 
a f x dx 
l 
n x 
a f x dx 
l l 
 
  
   
 
Odd Function 
f (x)   f (x) 
 The graph of odd function is passing through 
origin. 
 Examples:- 
3 3 x, x , x cos x,sin x, x cos x
Fourier series for odd function 
1. In the interval   x  
f x b nx 
( ) sin( ) 
1 
b f x nx dx 
0 
2 
n 
( ) sin( ) 
n 
n 
 
 
 
 
 
 
 

Fourier series for odd function 
(conti.) 
 In the interval l  x  l 
( ) sin( ) 
1 
0 
2 
n 
( ) sin( ) 
n 
n 
n 
f x b x 
l 
n 
b f x x dx 
l 
 
 
 
 
 
 
 
 
 

Half Range Fourier Cosine Series 
 In this method , we have 0 < x < π or 0 < x < l 
type interval. 
 In this method , we find only a0 and an . 
 bn = 0
Half Range Fourier Cosine Series 
1.In the interval 0 < x < π 
  0 
 
( )   
cos( ) 
1 
0 
 
 
0 
2 
 
 
0 
2 
n 
( ) 
 
2 
n 
( )*cos( ) 
n 
a 
f x a nx 
a f x dx 
a f x nx dx 
 
 
 
 
  
   
 
Half Range Fourier Cosine 
Series(conti.) 
2. In the interval 0 < x < l 
Take l = L 
0 
 
 
  
 
( ) cos( ) 
    
 
1 
0 
 
0 
2 
 
0 
2 
n 
( ) 
2 
n 
  
 
( )*cos( ) 
l 
l 
n 
a n x 
f x a 
l 
a f x dx 
l 
n x 
a f x dx 
l l 
 
  
   
 
Half Range Fourier Sine Series 
 In this method , we find only bn 
 an =0 
 a0 =0
Half Range Fourier Sine Series 
1. In interval 0 < x < π 
f x b nx 
( ) sin( ) 
1 
b f x nx dx 
0 
2 
n 
( ) sin( ) 
n 
n 
 
 
 
 
 
 
 

Half Range Fourier Sine Series 
(conti.) 
2. In the interval 0 < x < l 
( ) sin( ) 
1 
0 
2 
n 
( ) sin( ) 
n 
n 
n 
f x b x 
l 
n 
b f x x dx 
l 
 
 
 
 
 
 
 
 
 

Thank you!!!

More Related Content

Fourier series

  • 1. GUJARAT POWER ENGINEERING AND RESEARCH INSTITUTE ADVANCED ENGINEERING MATHEMATICS FOURIER SERIES
  • 2. GROUP MEMBERS  Pinky Chaudhari (131040109006)  Harwinder Kaur(131040109015)  Vibha Patel (131040109044)  Samia Zehra (131040109052)  Guided By : Prof. Nirav S. Modi
  • 3. INDEX  Fourier Series  General Fourier  Discontinuous Functions  Change Of Interval Method  Even And Odd Functions  Half Range Fourier Cosine & Sine Series
  • 4. FOURIER SERIES  A Fourier series is an expansion of a periodic function in terms of an infinite sum of sines and cosines.
  • 5. General Formula For Fourier Series Where,
  • 6. Formulas To Solve Examples  2SC = S + S  2CS = S – S  2CC = C + C  2SS = cos(α-β) –cos(α+β)  Even*Odd = Odd  Even*Even = Even  Odd*Odd = Even  Odd*Even = Odd
  • 7. uv  uv1 u 'v2 u''v3 u'''v4  ________ Where, u, u’, u”, u’’’,_ _ _ _ are denoted by derivatives. And V1,v2,v3,v4,_ _ _ _ _ are denoted by integral.
  • 8. Discontinuous Type Functions  In the interval C  X C2 f x C x x f x x x C         ( ), ( ), 2 1 0 2 0 f(x)  The function is discontinuous at x =x0 f x f x 0 0 0 ( 0) ( 0) ( ) 2 f x    
  • 9. So Fourier series formula is x C 0 2  a f x dx f x dx   0 1 2 0 1 ( ) ( ) C x             x C 0 2  a f x nx dx f x nx dx   1 2 0 x C 0 2  b f x nx dx f x nx dx   1 2 0 1 ( )*sin( ) ( )*sin( ) n C x             1 ( )*cos( ) ( )*cos( ) n C x            
  • 10. Change Of Interval Method  In this method , function has period P=2L , where L is any integer number.  In interval 0<x<2L Then l = L/2  When interval starts from 0 then l = L/2  In the interval –L < X < L Then l = L  For discontinuous function , Take l = C where C is constant.
  • 11.  General Fourier series formula in interval C  x C 2L    a n x n x f x a b ( ) cos( ) sin( ) 2 n n a f x dx C L 2 2 1         2 1 ( )*cos( )       ( )*sin( )  C L n  C n x b f x dx l l   n C n x a f x dx l l   0 1 ( ) C L C l    0 1 n l l            Where,
  • 12. Even Function f (x)  f (x)  The graph of even function is symmetrical about Y – axis.  Examples : 2 2 x , x ,cos x, x cos x, xsin x
  • 13. Fourier series for even function 1. In the interval   x    0  ( )   cos( ) 1 0   0 2   0 2 n ( )  2 n ( )*cos( ) n a f x a nx a f x dx a f x nx dx           
  • 14. Fourier series for even function (conti.) 2. In the interval l  x  l 0      ( ) cos( )      1 0  0 2  0 2 n ( ) 2 n    ( )*cos( ) l l n a n x f x a l a f x dx l n x a f x dx l l        
  • 15. Odd Function f (x)   f (x)  The graph of odd function is passing through origin.  Examples:- 3 3 x, x , x cos x,sin x, x cos x
  • 16. Fourier series for odd function 1. In the interval   x  f x b nx ( ) sin( ) 1 b f x nx dx 0 2 n ( ) sin( ) n n        
  • 17. Fourier series for odd function (conti.)  In the interval l  x  l ( ) sin( ) 1 0 2 n ( ) sin( ) n n n f x b x l n b f x x dx l          
  • 18. Half Range Fourier Cosine Series  In this method , we have 0 < x < π or 0 < x < l type interval.  In this method , we find only a0 and an .  bn = 0
  • 19. Half Range Fourier Cosine Series 1.In the interval 0 < x < π   0  ( )   cos( ) 1 0   0 2   0 2 n ( )  2 n ( )*cos( ) n a f x a nx a f x dx a f x nx dx           
  • 20. Half Range Fourier Cosine Series(conti.) 2. In the interval 0 < x < l Take l = L 0      ( ) cos( )      1 0  0 2  0 2 n ( ) 2 n    ( )*cos( ) l l n a n x f x a l a f x dx l n x a f x dx l l        
  • 21. Half Range Fourier Sine Series  In this method , we find only bn  an =0  a0 =0
  • 22. Half Range Fourier Sine Series 1. In interval 0 < x < π f x b nx ( ) sin( ) 1 b f x nx dx 0 2 n ( ) sin( ) n n        
  • 23. Half Range Fourier Sine Series (conti.) 2. In the interval 0 < x < l ( ) sin( ) 1 0 2 n ( ) sin( ) n n n f x b x l n b f x x dx l          