The document discusses linear differential equations with constant coefficients. It defines the order, auxiliary equation, complementary function, particular integral and general solution. It provides examples of determining the complementary function and particular integral for different types of linear differential equations. It also discusses Legendre's linear equations, Cauchy-Euler equations, and solving simultaneous linear differential equations.
1 of 27
Downloaded 707 times
More Related Content
Linear differential equation with constant coefficient
2. The order linear differential equation
with constant coefficient
th
n
1 2
0 1 2 11 2
.......
n n n
n nn n n
The Differential Equation of the form
d y d y d y dy
a a a a a y Q
dxdx dx dx
− −
−− −
+ + + + + =
3 2
3 2
3 6 2 sin 5
Example
d y d y dy
y x
dxdx dx
+ − + =
3. ( )F D y Q=
If
d D
dx
=
1 2
1 2 1( ) .......n n n
o n nWhere F D a D a D a D a D a− −
−= + + + + +
3 2
3 2
3 6 2 sin5Example d y d y dy y x
dxdx dx
+ − + =
3 2( 3 6 2 ) 5D y D y Dy y Sin x⇒ + − + =
3 2( 3 6 2) 5D D D y Sin x⇒ + − + =
( ) 5F D y Sin x⇒ =
3 2( ) ( 3 6 2)F D D D D∴ = + − +
4. Auxiliary Equation(A.E.)
. . . ( )Suppose L D E is F D y Q=
. . ( ) 0A E is F m =
1 2
1 2 1
....... 0n n n
o n n
OR a m a m a m a m a− −
−
+ + + + + =
3 2
3 2
3 6 2 sin5
d y d y dy
y x
dxdx dx
Example + − + =
3 2( 3 6 2) 5D D D y Sin x⇒ + − + = ( ) 5F D y Sin x⇒ =
3 2( ) ( 3 6 2)F D D D D∴ = + − +
3 2. . ( ) 0 3 6 2 0Hence A E is F m m m m= ⇒ + − + =
5. Complementary Function (C.F.) of L.D.E.
A function of ‘x’ which satisfies the L.D.E is known as
complementary function of L.D.E . .
Particular Integral (P.I.) of L.D.E.
A function of ‘x’ which satisfies the L.D.E. is known as
particular integral of L.D.E .
General Solution of L.D.E.
The general solution of L.D.E is given by
y = C.F. + P.I
( ) 0F D y =
( )F D y Q=
( )F D y Q=
6. General Solution of L.D.E.
Complete Solution :
y = C.F+P.I
Where C.F Complementary Function
P.I Particular Integral
. . . ( )Suppose L D E is F D y Q=
8. Determination of C.F.
Consider the L.D.E . F(D)y = 0
Write A.E. of L.D.E. F(m) = 0
Solve A.E.
Suppose
are the ‘n’ roots of the auxiliary equation.
1 2
1 2 1....... 0n n n
o n na m a m a m a m a− −
−⇒ + + + + + =
1 2 3, , ,........., nm m m m
9. Case I: (Roots are real)
1 2 3, , ,........., nIf m m m m are distinctW
31 2
1 2 3. ....... nm xm x m x m x
nthen C F c e c e c e c e= + + + +
10. Determination of C.F.
Consider the L.D.E .
# Write A.E. of L.D.E.
i.e.
.
# Solve A.E.
Suppose are the ‘n’ roots of the
auxiliary equation.
# Case I: (Roots are real)
# If are distinct then
( )F D y Q=
( ) 0F m =
1 2
1 2 1....... 0n n n
o n na m a m a m a m a− −
−+ + + + + =
1 2 3, , ,........., nm m m m
1 2 3, , ,........., nIf m m m m are distinct
31 2
1 2 3. ....... nm x m xm x m x
nthen C F c e c e c e c e= + + + +
11. # If are distinct then
# If are distinct then
# If are distinct then
# If are distinct then
1 2 3 4,( ) , ........., nm m k say and m m m= =
3 4
1 2 3 4. ( ) ....... nm x m xm xkx
nC F c c x e c e c e c e= + + + +
1 2 3 4 5,( ) , ........., nm m m k say and m m m= = =
542
1 2 3 4 5. ( ) ....... nm x m xm xkx
nC F c c x c x e c e c e c e= + + + + +
1 2 3 4,, ........., nm m and m m mα β α β= + = −
3 4
1 2 3 4. ( cosh sinh ) ....... nm x m xm xx
nC F e c x c x c e c e c eα
β β= + + + +
1 2 3 4 5, , ,......, nm m m m and m mα β α β= = + = = −
5
1 2 3 4 5. [( )cosh ( )sinh )] ...... nm x m xx
nC F e c c x x c c x x c e c eα
β β= + + + + + +
12. # Case II: (Roots are comlex)
# If are real and distinct then
# If are real and distinct
then
1 2 3 4, , ......, nm i m i and m m mα β α β= + = −
3 4
1 2 3 4. ( cos sin 0 ....... nm x m xm xx
nC F e c x c x c e c e c eα
β β= + + + +
1 2 3 4 5
, ,......, n
andm m i m m i m mα β α β= = + = = −
3
1 2 3 4 5. [( )cos ( )sin ] ..... nm x m xx
nC F e c xc x c xc x c e c eα
β β= + + + + + +
13. Determination of P.I.Determination of P.I.
P.I. of L.D.E. is given by
Thus P.I. =
Case I: when
# If then
( )F D y Q=
1
( )
Q
F D
1
( )
Q
F D
: ax
when QCASE I e=
1 1
. , ( ) 0
( ) ( )
ax axP I F a
F D F a
e e= ≠=
( ) 0F a =
'
'
1 1
. , ( ) 0
( ) ( )
ax axP I F a
F D F a
e x e= ≠=
14. # if then
Case II: when
'
( ) 0F a =
2
'
''
''
'
1
. .
( )
1
,
( )
1
,
( )
( ) 0
( ) 0
0
,
( )
ax
ax
ax
then P I
F D
x
F D
F
F a
x
F a
F a
e
e
e a
=
=
=
=
=
≠
sin cos( )Q ax or ax b= +
2 2
2 2
1
. ( )
[ ( )]
1
( ), [ ( )] 0
[ ( )] D a
D a
P I Sin ax b
F D
Sin ax b F D
F D =−
=−
= +
= + ≠
15. # if
# if
2 2
'
[ ( )] 0D a
If F D = −
=W
2 2
2 2
2 2
'
'
1
. ( ), [ ( )] 0
[ ( )]
1
( ), [ ( )] 0
[ ( )]
D a
D a
D a
P I Sin ax b F D
F D
x Sin ax b F D
F D
=−
= −
=−
= + =
= + ≠
2 2
'
[ ( )] 0D a
F D = −
=
2
2 2
2 2
2 2
2 2
'
'
''
''
1
. ( ), [ ( )] 0
[ ( )]
1
( ), [ ( )] 0
[ ( )]
1
( ), [ ( )] 0
[ ( )]
D a
D a
D a
D a
P I Sin ax b F D
F D
x Sin ax b F D
F D
x Sin ax b F D
F D
= −
= −
= −
= −
= + =
= + =
= + ≠
16. Case III: when , m non negative integer
Expending by Binomial theorem P.I. can be
evaluated
m
Q x=
1
1
.
( )
1
deg [1 ( )]
1
[1 ( )] ( )
m
m
m
P I x
F D
x
Lowest ree term D
D x
LDT
φ
φ −
=
±
= ±
=
1
[1 ( )]Dφ −
±
17. Case IV: when
Case V: (General Method), Q is any function of ‘x’
ax
Q e V=
1 1
.
( ) ( )
ax ax
P I e V e V
F D F D a
= =
+
1 1
.
( ) ( )( )
1 1
( ) ( )
1
( )
x x
P I Q Q
F D D D
Q
D D
Q dx
D
e eα α
φ α
φ α
φ
−
= =
−
= −
= ∫
18. 1. Solve
Solution: The d.e. is
The A.E. is
Factorizing
The roots are
2 2
3 2 2
2 2
2 2
1 1
. .
( 3 4) 3 6
1
.
(6 6) 6
x x
x
x
P I e x e
D D D D
x e
x e
D
= =
− + −
= =
−
The complete solution is
19. 2. Solve
Solution: The d.e. is
The a.e. is
Factorizing
The roots are
The complete solution is
20. 3. Solve
Solution: The d.e. is
The a.e. is Factorizing
The roots are
And
The complete solution is
24. Legendre’s Linear Equations
A Legendre’s linear differential equation is of the form
where are constants and
This differential equation can be converted into L.D.E with
constant coefficient by subsitution
and so on
25. Note: If then Legendre’s equation is known as
Cauchy- Euler’s equation
7. Solve
Put Then
The C.S. is
26. Simultaneous Linear Differential Equations
The most general form a system of simultaneous linear differential equations
containing two dependent variable x, y and the only independent variable t is
…………………(1),
where are constants and and are functions of t only.
8. Solve :
Solution: The system is
Eleminating ‘y’ between Equations (1) and (2), we get
It is L.D.E. with constant coefficient.
27. 1 2
1 2
1( cos sin ) cos2 . (4)
2
(1)+(2) 2 ' 2 2 sin2 cos2
2 sin2 cos2 2 2 '
1sin2 cos2 2 ( cos sin ) co
2
From (1) and (2),
(3)
t
t
x e C t C t t
x x y t t
y t t x x
t t e C t C t
Solution of eqn isgivenby
= + − −−−−−−−−−
⇒ − + = +
⇒ = + + −
= + + + −
1 2 1 2
1 2 1 2 1 2
s2
2 ( cos sin ) ( sin cos ) sin2 by using (3)
2 [ cos sin cos sin sin cos ]
sin2 cos2
t t
t
t
e C t C t e C t C t t
e C t C t C t C t C t C t
t
− + + − + +
= + − − + −
+ +
1 2
1 2
cos2 2sin2
2 ( sin cos ) sin2
1( sin cos ) sin2 ....................(5)
2
(5) (6) tan .
t
t
t t t
e C t C t t
C t C t ty e
Equations and give complete solution of given simul eous equations
− −
= − −
− −∴ =