User:Doeze/sandbox
Appearance
2008 Cheney vs Clinton
[edit]
| |||||||||||||||||||||||||||||
538 members of the Electoral College 270 electoral votes needed to win | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Opinion polls | |||||||||||||||||||||||||||||
Turnout | 61.6%[1] 1.5 pp | ||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Presidential election results map. Blue denotes states won by Clinton/Obama and red denotes those won by Cheney/Rice. Numbers indicate electoral votes cast by each state and the District of Columbia. | |||||||||||||||||||||||||||||
|
Nuclear reactor designs by coolant and moderator
[edit] Proposed design
Current commercial operation
Past commercial operation
Past military operation
Past research operation
|
Nuclear reactor designs
[edit]Name | Fuel | Enrichment | Moderator | Coolant | Temperature | First built | Thermal output (MWth) | Electrical output (MWe) |
---|---|---|---|---|---|---|---|---|
TMSR-LF1 | 19.75% | |||||||
HTR-PM | 8.5% | |||||||
RBMK-1000 | 2% | |||||||
BN-800 | 2100 | |||||||
EPR | 5% | |||||||
Generation IV designs
[edit]Acronym | Full name | Design organization | Country | Type | Coolant | Moderator | Fuel | Enrichment (wt %) | Design status | Purpose | Thermal output (MWth) | Gross electrical output (MWe) | Net electrical output (MWe) | Net efficiency | Thermodynamic cycle | Neutron spectrum | Non-electrical applications |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4S | super-safe, small and simple | Toshiba Energy Systems & Solutions Corp. | Japan | SFR | U-10Zr | 17 | Detailed design | Commercial | 30 | 10 | 10 | 33.3 | Rankine | Fast | Multiple | ||
ABWR | Advanced Boiling Water Reactor | GE-Hitachi | Japan | BWR | UO2 | 4 | Operational | Commerical | 3926 | 1420 | 1350 | 34 | Rankine | Thermal | - | ||
ABWR-II | Advanced Boiling Water Reactor II | GE-Hitachi | USA | BWR | UO2 | 5.2 | Under design | Commerical | 4960 | 1717 | 1638 | 33 | Rankine | Thermal | - | ||
ACR-1000 | Advanced CANDU Reactor 1000 | AECL | Canada | HWR | UO2 | 2.4 | Under design | Commerical | 3200 | 1165 | 1082 | 36.5 | Rankine | Thermal | H2 production | ||
AHWR | Advanced Heavy Water Reactor | BARC | India | HWR | MOX | 3.25 | Under design | Commerical | 920 | 304 | 284 | 30.9 | Rankine | Thermal | Desalination | ||
ALFRED | Advanced Lead Fast Reactor European Demonstrator | Ansaldo Nucleare | EU | LFR | No Moderator | MOX | - | Under design | Demonstration | 300 | 125 | 125 | - | - | Fast | - | |
ALLEGRO | ALLEGRO | EURATOM | EU | GFR | No Moderator | MOX | - | Under design | Demonstration | 75 | - | - | - | - | Fast | - | |
AP 1000 | Advanced Passive PWR | Westinghouse | USA | PWR | UO2 | 4.8 | Under construction | Commerical | 3400 | 1200 | 1100 | 32 | Rankine | Thermal | - | ||
AP-600 | Advanced Passive Pressurized Water Reactor | Westinghouse | USA | PWR | UO2 | 4.8 | On Hold | Commerical | 1940 | - | 600 | 31 | Rankine | Thermal | - | ||
APR+ | Advanced Power Reactor Plus | KHNP | South Korea | PWR | UO2 | 4.26 | Licensed | Commerical | 4290 | 1560 | 1505 | 35.1 | Rankine | Thermal | - | ||
APR1000 | Advanced Power Reactor | KEPCO/KHNP | South Korea | PWR | UO2 | 4 | Operational | Commerical | 2815 | 1050 | 1000 | 35.5 | Rankine | Thermal | - | ||
APR1400 | Advanced Power Reactor 1400 | KEPCO/KHNP | South Korea | PWR | UO2 | 4.65 | Operational | Commerical | 3983 | 1465 | 1400 | 35.1 | Rankine | Thermal | - | ||
APWR | Advanced Pressurized Water Reactor | Mitsubishi | Japan | PWR | UO2 | - | Under design | Commerical | 4466 | 1538 | 1500 | 34.4 | Rankine | Thermal | - | ||
ASTRID | Advanced Sodium Technological Reactor for Industrial Demonstration | CEA | France | SFR | No Moderator | MOX | 20 | Under design | Demonstration | 1500 | 600 | 600 | - | Brayton/Rankine | Fast | - | |
ATMEA1 | ATMEA1 | ATMEA | France | PWR | UO2 and MOX | 5 | Under design | Commerical | 3150 | 1200 | 1150 | 36 | Rankine | Thermal | - | ||
BN-1200 | BN-1200 | JSC “Afrikantov OKBM” | Russia | SFR | No Moderator | Nitride or MOX | - | Under construction | Commerical | 2800 | 1220 | 1140 | 40.7 | Rankine | Fast | - | |
BREST-OD-300 | BREST-OD-300 | RDIPE | Russia | LFR | No Moderator | PuN–UN | 13.5 | Under design | Demonstration | 700 | 300 | 300 | - | Rankine | Fast | - | |
BWRX-300 | Boiling Water Reactor X-300 | GE-Hitachi and Hitachi GE Nuclear Energy | USA | BWR | UO2 | 3.4 | Conceptual design | Commercial | 870 | 300 | 290 | 33 | Rankine | Thermal | Possible | ||
CFR-600 | China Fast Reactor 600 | China Institute of Atomic Energy | China | SFR | No Moderator | UO2 and MOX | - | Conceptual design | Demonstration | 1500 | 600 | 600 | 40 | - | Fast | - | |
CLEAR-I | China LEAd-based Research Reactor | Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences | China | LFR | No Moderator | UO2 | - | Conceptual design | Experimental | 10 | - | - | - | - | Fast | - | |
CSR1000 | Chinese Supercritical Water-Cooled Reactor | NPIC | China | SCWR | UO2 | 6.2 | Conceptual design | Demonstration | 2300 | 1000 | - | 43.5 | Rankine | Thermal | - | ||
EC6 | Enhanced CANDU 6 | AECL | Canada | HWR | UO2 | 0.7 | Under design | Commerical | 2084 | 740 | 690 | 35.5 | Rankine | Thermal | H2 production | ||
ELECTRA | European Lead Cooled Training Reactor | KTH | Sweden | LFR | No Moderator | (Pu,Zr)N | - | Under design | Experimental | 0.5 | - | - | - | - | Fast | - | |
ELFR | European Lead Fast Reactor | Ansaldo Nucleare | EU | LFR | No Moderator | MOX | - | Conceptual design | Demonstration | 1500 | 630 | 630 | 40 | Rankine | Fast | - | |
EM2 | Energy Multiplier Module | General Atomics | USA | GFR | No Moderator | UC | 7.7 | Conceptual design | Commercial | 500 | 272 | 265 | 53 | Combined | Fast | - | |
EPR | The Evolutionary Power Reactor | AREVA | France | PWR | UO2 and MOX | 4.95 | Under construction | Commerical | 4590 | 1770 | 1650 | 36 | Rankine | Thermal | - | ||
ESBWR | Economic Simplified Boiling Water Reactor | GE-Hitachi | USA | BWR | UO2 | - | Licensed | Commerical | 4500 | 1600 | 1520 | 34 | Rankine | Thermal | - | ||
FBNR | Fixed Bed Nuclear Reactor | FURGS | Brazil | PWR | CERMET | 5 | Under design | Commerical | 218 | 72 | 70 | 33 | Rankine | Thermal | Desalination | ||
FBR-1 & 2 | Fast Breeder Reactors 1 & 2 | IGCAR | India | SFR | No Moderator | MOX | - | Under design | Commerical | 1250 | 500 | 500 | 41.7 | Rankine | Fast | - | |
G4M | Gen4 Module | Gen4 Energy Inc. | USA | LFR | No Moderator | Uranium nitride | 19.75 | Under design | Commerical | 70 | 25 | 25 | - | Rankine | Fast | - | |
GTHTR300C | Gas Turbine High Temperature Reactor | JAEA | Japan | GCR | UO2 and MOX | 14.3 | Conceptual design | Demonstration | 600 | 274 | - | 47 | Brayton | Thermal | H2 production | ||
HAPPY200 | Advanced low-Pressurized and Passive SafetY system – 200 MWth | SPIC | China | PWR | UO2 | 2.76 | Detailed design | Commercial | 200 | - | - | - | - | Thermal | Civil heat supply | ||
HP-LWR | High Performance LWR | KIT and partners | EU | SCWR | UO2 | 9 | Conceptual design | Demonstration | 2300 | 1046 | 1000 | 43.5 | Rankine | Thermal | - | ||
HTR-PM | High Temperature GCR - Pebble-Bed Module | Tsinghua University | China | GCR | UO2 | 8.5 | Under construction | Demonstration | 500 | 211 | 200 | - | Rankine | Thermal | - | ||
IMR | Integrated Modular Water Reactor | Mitsubishi | Japan | iPWR | UO2 | 4.8 | Under design | Commerical | 1000 | 350 | 350 | 35 | Rankine | Thermal | - | ||
IMSR-400 | Integral Molten Salt Reactor-400 | Terrestrial Energy | Canada | MSR | Fluoride Salts | UF4 | 5-19 | Under design | Commerical | 400 | 194 | 185 | 46 | Rankine | Thermal | Multiple | |
IPHWR-220 | Indian 220 MWe PHWR | NPCIL | India | HWR | UO2 | 0.7 | Operational | Commerical | 754 | 235.81 | 210 | 28 | Modified Rankine | Thermal | - | ||
IPHWR-700 | Indian 700 MWe PHWR | NPCIL | India | HWR | UO2 | 0.7 | Operational | Commerical | 2166 | 700 | 630 | 29 | Modified Rankine | Thermal | - | ||
JSCWR | Japanese Supercritical WCR | Toshiba and partners | Japan | SCWR | UO2 | 7.2 | Conceptual design | Demonstration | 3681 | 700 | 1620 | 44 | Rankine | Thermal | - | ||
JSFR | Japan Sodium-cooled Fast Reactor | JAEA | Japan | SFR | No Moderator | MOX | - | Under design | Commerical | 3530 | 750 | 750 | - | - | Fast | - | |
KAMADO FBR | KAMADO FBR | CREIPI | Japan | GFR | Carbon Dioxide | No Moderator | UO2 and MOX | 18 | Conceptual design | Demonstration | 3000 | 1000 | 1000 | 33.3 | Rankine | Fast | - |
KERENA | KERENA | AREVA | France | BWR | UO2 and MOX | 4.95 | Under design | Commerical | 3370 | 1290 | 1250 | 37 | Rankine | Thermal | - | ||
KLT-40S | KLT-40S | OKBM | Russia | PWR | UO2 | 13 | Under construction | Commerical | 300 | 70 | 60 | 23.3 | Rankine | Thermal | Distric heat | ||
LFR-AS-200 | Lead-cooled Fast Reactor Amphora-Shaped 200 | Hydromine Energy S.a.r.l | Luxembourg | LFR | No moderator | MOX | 19 | Conceptual design | Commercial | 480 | 212 | 200 | 42 | Rankine | Fast | Heat for industrial processes | |
LFTR | Liquid Fluoride Thorium Reactor | Flibe Energy | USA | MSR | Fluoride Salts | Molten salt with thorium and uranium | - | Conceptual design | Commerical | 600 | 250 | - | 45 | Brayton with IHX | Thermal | - | |
MBIR | Multipurpose fast-neutron research reactor | NIKIET | Russia | SFR | No Moderator | MOX | - | Under design | Experimental | 150 | 60 | 60 | - | - | Fast | - | |
Mk1 PB-FHR | Mark 1 Pebble-Bed Fluoride-Salt-Cooled High Temperature Reactor | University of California, Berkeley | USA | MSR | Fluoride Salts | UCO | 19.8 | Under design | Commerical | 236 | 100 | - | 42.5 | Brayton | Thermal | - | |
MoveluX | Mobile-Very-small reactor for Local Utility in X-mark | Toshiba Energy Systems & Solutions | Japan | SMR (micro) | Calcium hydride (CaH2) | U3Si2 | 4.8 | Conceptual design | Commercial | 10 | 3.5 | 3.5 | 35 | Brayton | Thermal | Process heat supply, Hydrogen production | |
MSFR | Molten Salt Fast Reactors | CNRS | France | MSR | Molten Salt | No Moderator | LiF-(U,Pu)F3-ThF4 | - | Conceptual design | Demonstration | 3000 | 1500 | 1500 | - | - | Fast | - |
MSR-FUJI | Molten Salt Reactor-FUJI | International Thorium Molten-Salt Forum: ITMSF | Japan | MSR | Fluoride Salts | Molten salt with thorium and uranium | 2 | Conceptual design | Commerical | 450 | 207 | 200 | 44.4 | Rankine | Thermal | Multiple | |
MSTW | Molten Salt Thermal Wasteburner | Seaborg Technologies | Denmark | MSR | Molten Salt | Eutectic Sodium-actinide fluoride salt mixture | - | Conceptual design | Commerical | 270 | 115 | - | 42.5 | Rankine | Thermal | Multiple | |
MYRRHA | Multi-purpose hYbrid Research Reactor for High-tech Applications | Belgian Nuclear Research Centre (SCK•CEN) | Belgium | LFR | No Moderator | MOX | - | Under design | Experimental | 100 | - | - | - | - | Fast | - | |
NuScale | NuScale SMR | NuScale Power Inc. | USA | iPWR | UO2 | 4.95 | Under regulatory review | Commerical | 200 | 60 | 57 | 28.5 | Rankine | Thermal | - | ||
NUWARD | NUWARD | CEA EDF Naval Group and Technicatome | France | PWR | UO2 | 4.95 | Conceptual design | Commercial | 540 | 185 | 170 | 31 | Rankine | Thermal | Optional | ||
OPR1000 | Advanced Power Reactor | KEPCO/KHNP | South Korea | PWR | UO2 | 4 | Operational | Commerical | 2815 | 1050 | 1000 | 35.5 | Rankine | Thermal | - | ||
PBMR | Pebble Bed Modular Reactor | Pebble Bed Modular Reactor (Pty) Limited | South Africa | GCR | UO2 | - | On Hold | Commerical | 400 | 165 | 165 | 40 | - | Thermal | - | ||
PEACER | Proliferation-resistant Environment-friendly Accident-tolerant Continuable and Economical Reactor | Seoul National University | South Korea | LFR | No Moderator | U-TRU-Zr | - | Conceptual design | Demonstration | 850 | 300 | 300 | - | - | Fast | - | |
PGSFR | Prototype Gen-IV Sodium-cooled Fast Reactor | KAERI | South Korea | SFR | No Moderator | U-Zr and U-TRU-Zr | - | Conceptual design | Demonstration | 150 | - | - | - | - | Fast | - | |
PRISM | Power Reactor Innovative Small Reactor | GE-Hitachi | USA | SFR | No Moderator | U-Pu-Zr | 26 | Under design | Commerical | 840 | 311 | 311 | - | Rankine | Fast | - | |
Prismatic HTR | Prismatic Modular High Temperature GCR | General Atomics | USA | GCR | UO2 | 15.5 | Under design | Commerical | 350 | 150 | - | 42.8 | Rankine | Thermal | - | ||
RMWR | Reduced-Moderation Water Reactor | JAEA | Japan | BWR | UO2 and MOX | 11.4 | Under design | Demonstration | 3926 | 1356 | 1300 | 40 | - | Thermal | - | ||
SC-HTGR | Steam Cycle High Temperature Gas-cooled Reactor | Framatome | USA | GCR | UCO | 15.5 | Conceptual design | Commercial | 625 | 282 | 272 | 43 | Rankine | Thermal | Industrial process heat | ||
SEALER | Swedish Advanced Lead Reactor | LeadCold | Sweden | LFR | No Moderator | UN | 11.8 | Conceptual design | Commercial | 140 | 58 | 55 | 39.3 | Rankine | Fast | - | |
SmAHTR | Small fluoride salt-cooled High Temperature Reactor | Oak Ridge National Laboratory | USA | MSR | Fluoride Salts | UCO | 8 | Under design | Demonstration | 125 | - | - | - | - | Thermal | H2 production | |
SMART | System-Integrated Modular Advanced Reactor | KAERI | South Korea | iPWR | UO2 | 4.8 | Licensed | Commerical | 330 | 100 | 90 | 30.3 | Rankine | Thermal | Desalination | ||
SVBR-100 | SVBR-100 | AKME Engineering | Russia | LFR | No Moderator | UO2 | 16.5 | Under design | Commerical | 280 | 101 | 101 | - | Rankine | Fast | - | |
ThorCon | ThorCon | ThorCon US, Inc. | USA | MSR | Molten Salt | UF4, ThF4 | 19.7 | Detailed design | Commercial | 557 | 258 | 250 | 46.4 | Rankine | Thermal | - | |
TWR-P | Travelling Wave Reactor-Prototype | TerraPower | USA | SFR | No Moderator | U-Zr | - | Under design | Commerical | 1475 | 600 | 600 | - | - | Fast | - | |
UK-SMR | UK Small Modular Reactor | Rolls Royce & Partners | United Kingdom | PWR | UO2 | 4.95 | Conceptual design | Commercial | 1276 | 443 | 443 | 34.7 | Rankine | Thermal | Optional, configurable | ||
VBER-300 | VBER-300 | OKBM | Russia | PWR | UO2 | 4.95 | Under design | Commerical | 917 | 325 | 300 | 33 | Rankine | Thermal | Distric heat | ||
VVER-1000 (V-466B) | VVER-1000 (V-466B) | Gidropress | Russia | PWR | UO2 | 4.45 | Under construction | Commerical | 3000 | 1060 | 1011 | 33.7 | Rankine | Thermal | District heat | ||
VVER-1200 (V-392M) | VVER-1200 (V-392M) | Gidropress | Russia | PWR | UO2 | 4.79 | Under construction | Commerical | 3200 | 1170 | 1082 | 33.9 | Rankine | Thermal | District heat | ||
VVER-1200 (V-491) | VVER-1200 (V-491) | Gidropress | Russia | PWR | UO2 | 4.79 | Under design | Commerical | 3200 | 1170 | 1082 | 33.9 | Rankine | Thermal | District heat | ||
VVER-1500 (V-448) | VVER-1500 (V-448) | Gidropress | Russia | PWR | UO2 | 4.92 | Under design | Commerical | 4250 | 1560 | 1560 | 35.7 | Rankine | Thermal | - | ||
VVER-300 (V-478) | VVER-300 (V-478) | Gidropress | Russia | PWR | UO2 | 4.79 | Under design | Commerical | 850 | - | 300 | 35.3 | Rankine | Thermal | - | ||
VVER-600 (V-498) | VVER-600 (V-498) | Gidropress | Russia | PWR | UO2 | - | Under design | Commerical | 1600 | 600 | 600 | 35 | Rankine | Thermal | - | ||
VVER-640 (V-407) | VVER-640 (V-407) | Gidropress | Russia | PWR | UO2 | 3.18 | Under design | Commerical | 1800 | 645 | 603 | 33.3 | Rankine | Thermal | District heat | ||
W-LFR | Westinghouse Lead-cooled Fast Reactor | Westinghouse Electric Company LLC | USA | LFR | No Moderator | Oxide (UO2 or MOX) (prototype) Advanced fuel(commercial) | - | Conceptual design | Demonstration | 950 | 468 | 460 | 48.4 | "Brankine" (Condensing sCO2) | Fast | - |
Gen IV compact
[edit]Acronym | Country | Type | Coolant | Moderator | Fuel | Enrichment (wt %) | Design status | Thermal output (MWth) | Gross electrical output (MWe) | Net electrical output (MWe) | Net efficiency |
---|---|---|---|---|---|---|---|---|---|---|---|
4S | Japan | SFR | U-10Zr | 17 | Detailed design | 30 | 10 | 10 | 33.3 | ||
ABWR | Japan | BWR | UO2 | 4 | Operational | 3926 | 1420 | 1350 | 34 | ||
ABWR-II | USA | BWR | UO2 | 5.2 | Under Design | 4960 | 1717 | 1638 | 33 | ||
ACR-1000 | Canada | HWR | UO2 | 2.4 | Under Design | 3200 | 1165 | 1082 | 36.5 | ||
AHWR | India | HWR | MOX | 3.25 | Under Design | 920 | 304 | 284 | 30.9 | ||
ALFRED | EU | LFR | No Moderator | MOX | - | Under Design | 300 | 125 | 125 | - | |
ALLEGRO | EU | GFR | No Moderator | MOX | - | Under Design | 75 | - | - | - | |
AP 1000 | USA | PWR | UO2 | 4.8 | Construction | 3400 | 1200 | 1100 | 32 | ||
AP-600 | USA | PWR | UO2 | 4.8 | On Hold | 1940 | - | 600 | 31 | ||
APR+ | South Korea | PWR | UO2 | 4.26 | Licensed | 4290 | 1560 | 1505 | 35.1 | ||
APR1000 | South Korea | PWR | UO2 | 4 | Operational | 2815 | 1050 | 1000 | 35.5 | ||
APR1400 | South Korea | PWR | UO2 | 4.65 | Operational | 3983 | 1465 | 1400 | 35.1 | ||
APWR | Japan | PWR | UO2 | - | Under Design | 4466 | 1538 | 1500 | 34.4 | ||
ASTRID | France | SFR | No Moderator | MOX | 20 | Under Design | 1500 | 600 | 600 | - | |
ATMEA1 | France | PWR | UO2 and MOX | 5 | Under Design | 3150 | 1200 | 1150 | 36 | ||
BN-1200 | Russia | SFR | No Moderator | Nitride or MOX | - | Construction | 2800 | 1220 | 1140 | 40.7 | |
BREST-OD-300 | Russia | LFR | No Moderator | PuN–UN | 13.5 | Under Design | 700 | 300 | 300 | - | |
BWRX-300 | USA | BWR | UO2 | 3.4 | Conceptual Design | 870 | 300 | 290 | 33 | ||
CFR-600 | China | SFR | No Moderator | UO2 and MOX | - | Conceptual Design | 1500 | 600 | 600 | 40 | |
CLEAR-I | China | LFR | No Moderator | UO2 | - | Conceptual Design | 10 | - | - | - | |
CSR1000 | China | SCWR | UO2 | 6.2 | Conceptual Design | 2300 | 1000 | - | 43.5 | ||
EC6 | Canada | HWR | UO2 | 0.7 | Under Design | 2084 | 740 | 690 | 35.5 | ||
ELECTRA | Sweden | LFR | No Moderator | (Pu,Zr)N | - | Under Design | 0.5 | - | - | - | |
ELFR | EU | LFR | No Moderator | MOX | - | Conceptual Design | 1500 | 630 | 630 | 40 | |
EM2 | USA | GFR | No Moderator | UC | 7.7 | Conceptual Design | 500 | 272 | 265 | 53 | |
EPR | France | PWR | UO2 and MOX | 4.95 | Construction | 4590 | 1770 | 1650 | 36 | ||
ESBWR | USA | BWR | UO2 | - | Licensed | 4500 | 1600 | 1520 | 34 | ||
FBNR | Brazil | PWR | CERMET | 5 | Under Design | 218 | 72 | 70 | 33 | ||
FBR-1 & 2 | India | SFR | No Moderator | MOX | - | Under Design | 1250 | 500 | 500 | 41.7 | |
G4M | USA | LFR | No Moderator | Uranium nitride | 19.75 | Under Design | 70 | 25 | 25 | - | |
GTHTR300C | Japan | GCR | Graphite | UO2 and MOX | 14.3 | Conceptual Design | 600 | 274 | - | 47 | |
HAPPY200 | China | PWR | UO2 | 2.76 | Detailed design | 200 | - | - | - | ||
HP-LWR | EU | SCWR | UO2 | 9 | Conceptual Design | 2300 | 1046 | 1000 | 43.5 | ||
HTR-PM | China | GCR | Graphite | UO2 | 8.5 | Construction | 500 | 211 | 200 | - | |
IMR | Japan | iPWR | UO2 | 4.8 | Under Design | 1000 | 350 | 350 | 35 | ||
IMSR-400 | Canada | MSR | Fluoride Salts | Graphite | UF4 | 5-19 | Under Design | 400 | 194 | 185 | 46 |
IPHWR-220 | India | HWR | UO2 | 0.7 | Operational | 754 | 235.81 | 210 | 28 | ||
IPHWR-700 | India | HWR | UO2 | 0.7 | Operational | 2166 | 700 | 630 | 29 | ||
JSCWR | Japan | SCWR | UO2 | 7.2 | Conceptual Design | 3681 | 700 | 1620 | 44 | ||
JSFR | Japan | SFR | No Moderator | MOX | - | Under Design | 3530 | 750 | 750 | - | |
KAMADO FBR | Japan | GFR | Carbon Dioxide | No Moderator | UO2 and MOX | 18 | Conceptual Design | 3000 | 1000 | 1000 | 33.3 |
KERENA | France | BWR | UO2 and MOX | 4.95 | Under Design | 3370 | 1290 | 1250 | 37 | ||
KLT-40S | Russia | PWR | UO2 | 13 | Construction | 300 | 70 | 60 | 23.3 | ||
LFR-AS-200 | Luxembourg | LFR | No moderator | MOX | 19 | Conceptual Design | 480 | 212 | 200 | 42 | |
LFTR | USA | MSR | Fluoride Salts | Graphite | Molten salt with thorium and uranium | - | Conceptual Design | 600 | 250 | - | 45 |
MBIR | Russia | SFR | No Moderator | MOX | - | Under Design | 150 | 60 | 60 | - | |
Mk1 PB-FHR | USA | MSR | Fluoride Salts | Graphite | UCO | 19.8 | Under Design | 236 | 100 | - | 42.5 |
MoveluX | Japan | SMR (micro) | Calcium hydride (CaH2) | U3Si2 | 4.8 | Conceptual Design | 10 | 3.5 | 3.5 | 35 | |
MSFR | France | MSR | Molten Salt | No Moderator | LiF-(U,Pu)F3-ThF4 | - | Conceptual Design | 3000 | 1500 | 1500 | - |
MSR-FUJI | Japan | MSR | Fluoride Salts | Graphite | Molten salt with thorium and uranium | 2 | Conceptual Design | 450 | 207 | 200 | 44.4 |
MSTW | Denmark | MSR | Molten Salt | Graphite | Eutectic Sodium-actinide fluoride salt mixture | - | Conceptual Design | 270 | 115 | - | 42.5 |
MYRRHA | Belgium | LFR | No Moderator | MOX | - | Under Design | 100 | - | - | - | |
NuScale | USA | iPWR | UO2 | 4.95 | Under Regulatory Review | 200 | 60 | 57 | 28.5 | ||
NUWARD | France | PWR | UO2 | 4.95 | Conceptual Design | 540 | 185 | 170 | 31 | ||
OPR1000 | South Korea | PWR | UO2 | 4 | Operational | 2815 | 1050 | 1000 | 35.5 | ||
PBMR | South Africa | GCR | Graphite | UO2 | - | On Hold | 400 | 165 | 165 | 40 | |
PEACER | South Korea | LFR | No Moderator | U-TRU-Zr | - | Conceptual Design | 850 | 300 | 300 | - | |
PGSFR | South Korea | SFR | No Moderator | U-Zr and U-TRU-Zr | - | Conceptual Design | 150 | - | - | - | |
PRISM | USA | SFR | No Moderator | U-Pu-Zr | 26 | Under Design | 840 | 311 | 311 | - | |
Prismatic HTR | USA | GCR | Graphite | UO2 | 15.5 | Under Design | 350 | 150 | - | 42.8 | |
RMWR | Japan | BWR | UO2 and MOX | 11.4 | Under Design | 3926 | 1356 | 1300 | 40 | ||
SC-HTGR | USA | GCR | Graphite | UCO | 15.5 | Conceptual Design | 625 | 282 | 272 | 43 | |
SEALER | Sweden | LFR | Lead | No Moderator | UN | 11.8 | Conceptual Design | 140 | 58 | 55 | 39.3 |
SmAHTR | USA | MSR | Fluoride Salts | Graphite | UCO | 8 | Under Design | 125 | - | - | - |
SMART | South Korea | iPWR | UO2 | 4.8 | Licensed | 330 | 100 | 90 | 30.3 | ||
SVBR-100 | Russia | LFR | No Moderator | UO2 | 16.5 | Under Design | 280 | 101 | 101 | - | |
ThorCon | USA | MSR | Molten Salt | Graphite | UF4, ThF4 | 19.7 | Detailed design | 557 | 258 | 250 | 46.4 |
TWR-P | USA | SFR | No Moderator | U-Zr | - | Under Design | 1475 | 600 | 600 | - | |
UK-SMR | United Kingdom | PWR | UO2 | 4.95 | Conceptual Design | 1276 | 443 | 443 | 34.7 | ||
VBER-300 | Russia | PWR | UO2 | 4.95 | Under Design | 917 | 325 | 300 | 33 | ||
VVER-1000 (V-466B) | Russia | PWR | UO2 | 4.45 | Construction | 3000 | 1060 | 1011 | 33.7 | ||
VVER-1200 (V-392M) | Russia | PWR | UO2 | 4.79 | Construction | 3200 | 1170 | 1082 | 33.9 | ||
VVER-1200 (V-491) | Russia | PWR | UO2 | 4.79 | Under Design | 3200 | 1170 | 1082 | 33.9 | ||
VVER-1500 (V-448) | Russia | PWR | UO2 | 4.92 | Under Design | 4250 | 1560 | 1560 | 35.7 | ||
VVER-300 (V-478) | Russia | PWR | UO2 | 4.79 | Under Design | 850 | - | 300 | 35.3 | ||
VVER-600 (V-498) | Russia | PWR | UO2 | - | Under Design | 1600 | 600 | 600 | 35 | ||
VVER-640 (V-407) | Russia | PWR | UO2 | 3.18 | Under Design | 1800 | 645 | 603 | 33.3 | ||
W-LFR | USA | LFR | No Moderator | Oxide (UO2 or MOX) (prototype) Advanced fuel(commercial) | - | Conceptual Design | 950 | 468 | 460 | 48.4 |
Generation V designs
[edit]Name | Fuel phase | Fuel | Moderator | Coolant | Enrichment | Organization |
---|---|---|---|---|---|---|
GCR/VCR-MHD | Gas | or | University of Florida | |||
GCR-U-C-F | Gas | and | Eindhoven University of Technology | |||
GCR-UF6 | Gas | Los Alamos National Laboratory | ||||
Plasma Core | Gas | Los Alamos National Laboratory | ||||
LM-FR | Liquid | or | ||||
US nuclear bomb evolution
[edit]Confirmed Pre-Columbian transoceanic contacts
[edit]Contact began | Contact ended | Location | ||
---|---|---|---|---|
Paleo-Indian migration | 18,000 BCE | 13,000 BCE | Alaska | |
Norse settlements in Greenland | 986 | 1350-1500 | Greenland | |
Norse settlement in Newfoundland | 1000s | 1000s | Newfoundland | |
Austronesian-South American contact | 1150 | 1380 | Colombia | |
Trans-Bering Strait contact | ||||
Columbus' first voyage | 1492 | Bahamas |
List of X-planes
[edit]Type | Manufacturer | Agency | Date | Status | Regime | Control | Role | Notes |
---|---|---|---|---|---|---|---|---|
X-1 | Bell | USAF, NACA | 1946 | Flew | Supersonic | Manned | High-speed and high-altitude flight | First aircraft to break the sound barrier in level flight. Proved aerodynamic viability of thin wing sections.[2] |
X-1A X-1B X-1C X-1D | Bell | USAF, NACA | 1951 | Flew | Supersonic | Manned | High-speed and high-altitude flight | |
X-1E | Bell | USAF, NACA | 1955 | Flew | Supersonic | Manned | High-speed and high-altitude flight | |
X-2 | Bell | USAF | 1952 | Flew | Supersonic | Manned | High-speed and high-altitude flight | First aircraft to exceed Mach 3.[3] |
X-3 Stiletto | Douglas | USAF, NACA | 1952 | Flew | Supersonic | Manned | Highly loaded trapezoidal wing | Titanium alloy construction; Underpowered, but provided insights into inertia coupling.[4] |
X-4 Bantam | Northrop | USAF, NACA | 1948 | Flew | Transonic | Manned | Transonic tailless aircraft[5] | |
X-5 | Bell | USAF, NACA | 1951 | Flew | Transonic | Manned | variable geometry | First aircraft to fly with variable wing sweep.[6] |
X-6 | Convair | USAF, AEC | 1957 | Subsonic | Manned | Nuclear Propulsion | Not built. The Convair NB-36H experiment, a B-36 modified to carry (but not powered by) a nuclear reactor, flew from 1955 to 1957.[7][8] | |
X-7 | Lockheed | USAF, USA, USN | 1951 | Flew | Supersonic | Unmanned | Ramjet engines.[9] | |
X-8 Aerobee | Aerojet | NACA, USAF, USN | 1949 | Flew | Unmanned | Upper air research[10] | Later models used as sounding rockets. | |
X-9 Shrike | Bell | USAF | 1949 | Flew | Unmanned | Guidance and propulsion technology | Assisted development of GAM-63 Rascal missile.[11] | |
X-10 | North American | USAF | 1953 | Flew | Unmanned | SM-64 Navajo missile testbed.[12] | ||
X-11 | Convair | USAF | 1953 | Flew | Unmanned | Proposed SM-65 Atlas missile testbed.[13] | ||
X-12 | Convair | USAF | 1953 | Flew | Unmanned | Proposed SM-65 Atlas missile testbed.[14] | ||
X-13 Vertijet | Ryan | USAF, USN | 1955 | Flew | Manned | Vertical takeoff and landing (VTOL) | tailsitting VTOL flight.[15] | |
X-14 | Bell | USAF, NASA | 1957 | Flew | Manned | VTOL | Vectored thrust configuration for VTOL flight.[16] | |
X-15 | North American | USAF, NASA | 1959 | Flew | Hypersonic | Manned | Hypersonic, high-altitude flight | First crewed hypersonic aircraft; capable of suborbital spaceflight.[17] |
X-15A-2 | North American | USAF, NASA | 1964 | Flew | Hypersonic | Manned | Hypersonic, high-altitude flight | Major Pete Knight flew the X-15A-2 to a Mach 6.70, making it the fastest piloted flight of the X-plane program. |
X-16 | Bell | USAF | 1954 | Manned | High-altitude reconnaissance[18] | "X-16" designation used to hide true purpose.[19] Canceled and never flew. | ||
X-17 | Lockheed | USAF, USN | 1956 | Flew | Unmanned | High Mach number reentry.[20] | ||
X-18 | Hiller | USAF, USN | 1959 | Flew | Subsonic | Manned | Vertical and/or short take-off and landing (V/STOL) | Evaluated the tiltwing concept for VTOL flight.[21] |
X-19 | Curtiss-Wright | Tri-service | 1963 | Flew | Subsonic | Manned | Tandem tiltrotor VTOL[22] | XC-143 designation requested but turned down.[23] |
X-20 Dyna-Soar | Boeing | USAF | 1963 | Subsonic | Manned | Reusable spaceplane | Intended for military missions.[24] Canceled and never built. | |
X-21A | Northrop | USAF | 1963 | Flew | Subsonic | Manned | Boundary layer control[25] | |
X-22 | Bell | Tri-service | 1966 | Flew | Subsonic | Manned | Quad ducted fan tiltrotor STOVL[26] | |
X-23 PRIME | Martin Marietta | USAF | 1966 | Maneuvering atmospheric reentry[27] | Designation never officially assigned.[23] | |||
X-24A | Martin Marietta | USAF, NASA | 1969 | Supersonic | Manned | Low-speed lifting body[28] | ||
X-24B | Martin Marietta | USAF, NASA | 1973 | Supersonic | Manned | Low-speed lifting body[29] | ||
X-25 | Bensen | USAF | 1955 | Manned | Commercial light autogyro for downed pilots.[30] | |||
X-26 Frigate | Schweizer | DARPA, US Army, USN | 1967 | Manned | Training glider for yaw-roll coupling Quiet observation aircraft[31] | |||
X-27 | Lockheed | None | 1971 | high-performance research aircraft. High-performance fighter[32] | Proposed development of Lockheed CL-1200 Lancer. Canceled and never flew. | |||
X-28 Sea Skimmer | Osprey | USN | 1970 | Low-cost aerial policing seaplane[33] | ||||
X-29 | Grumman | DARPA, USAF, NASA | 1984 | Manned | Forward-swept wing[34] | |||
X-30 NASP | Rockwell | NASA, DARPA, USAF | 1993 | Single-stage-to-orbit spaceplane[35] | Canceled and never built. | |||
X-31 | Rockwell-MBB | DARPA, USAF, BdV | 1990 | Thrust vectoring supermaneuverability[36] | ||||
X-32A | Boeing | USAF, USN, USMC, RAF | 2000 | Supersonic | Manned | Joint Strike Fighter[37] | ||
X-32B | 2001 | Supersonic | Manned | |||||
X-33 | Lockheed Martin | NASA | 2001 | Manned | Half-scale reusable launch vehicle prototype.[38] | Prototype never completed. | ||
X-34 | Orbital Sciences | NASA | 2001 | Hypersonic | Reusable pilotless spaceplane.[39] | Never flew. | ||
X-35A | Lockheed Martin | USAF, USN, USMC, RAF | 2000 | Supersonic | Manned | Joint Strike Fighter[40] | ||
X-35B | 2001 | Supersonic | Manned | First in family to use VTOL. Also used unconventional mode of lift engine (lift fan). | ||||
X-35C | 2000 | Supersonic | Manned | |||||
X-36 | McDonnell Douglas | NASA | 1997 | Manned | 28% scale tailless fighter[41] | |||
X-37 | Boeing | USAF, USSF, NASA | 2010 | Hypersonic | Reusable orbital spaceplane[42] | Drop test performed in 2006. Seven flights to space since 22 April 2010 | ||
X-38 | Scaled Composites | NASA | 1998 | Hypersonic | Lifting body Crew Return Vehicle[43] | |||
X-39 | Unknown | USAF | Future Aircraft Technology Enhancements (FATE) program.[44] | Designation never officially assigned.[23] | ||||
X-40A | Boeing | USAF, NASA | 1998 | 80% scale Space Maneuver Vehicle X-37 prototype.[45] | ||||
X-41 | Unknown | USAF | Hypersonic | Maneuvering re-entry vehicle.[46] | ||||
X-42 | Unknown | USAF | Expendable liquid propellant upper-stage rocket.[47] | |||||
X-43 Hyper-X | Micro-Craft | NASA | 2001 | Hypersonic | Hypersonic Scramjet[48] | |||
X-44 MANTA | Lockheed Martin | USAF, NASA | 2000 | F-22-based Multi-Axis No-Tail Aircraft thrust vectoring[49] | Canceled, never flew. | |||
X-45 | Boeing | DARPA, USAF | 2002 | Unmanned | Unmanned combat air vehicle (UCAV)[50] | |||
X-46 | Boeing | DARPA, USN | 2003 | Unmanned | Unmanned combat air vehicle (UCAV).[51] | Naval use. Canceled, never flew. | ||
X-47A Pegasus | Northrop Grumman | DARPA, USN | 2003 | Unmanned | Unmanned combat air vehicle (UCAV)[52] | Naval use. | ||
X-47B | Northrop Grumman | DARPA, USN | 2011 | Unmanned | UCAV | Naval use. | ||
X-47C | Northrop Grumman | USAF | Manned bomber | Proposal for a new-generation strategic bomber. Design only. | ||||
X-48 | Boeing | NASA | 2007 | Blended Wing Body (BWB)[53] | ||||
X-49 SpeedHawk | Piasecki | US Army | 2007 | Compound helicopter Vectored Thrust Ducted Propeller (VTDP) testbed.[54] | ||||
X-50 Dragonfly | Boeing | DARPA | 2003 | Canard Rotor/Wing[55] | ||||
X-51 Waverider | Boeing | USAF | 2010[56] | Hypersonic | Unmanned | Hypersonic scramjet[57] | ||
X-52 | — | — | — | — | Number skipped to avoid confusion with Boeing B-52 Stratofortress.[23] | |||
X-53 | Boeing | NASA, USAF | 2002 | Supersonic | Manned | Active Aeroelastic Wing[58] | ||
X-54 | Gulfstream | NASA | Low-noise supersonic transport[59] in development. | |||||
X-55 | Lockheed Martin | USAF | 2009 | Advanced Composite Cargo Aircraft (ACCA)[60] | ||||
X-56 | Lockheed Martin | USAF/NASA | 2013 | Active flutter suppression and gust load alleviation | Part of the high-altitude, long-endurance (HALE) reconnaissance aircraft program.[61] | |||
X-57 Maxwell | ESAero/Tecnam | NASA | 2023 | Low emission plane powered entirely by electric motors[62] | Part of NASA's Scalable Convergent Electric Propulsion Technology Operations Research project[62] (SCEPTOR). Cancelled in 2023, never flew. | |||
X-58 | — | — | — | — | Number skipped; slot apparently assigned to Kratos XQ-58 Valkyrie.[63] | |||
X-59 Quesst | Lockheed Martin | NASA | 2024 | Prototype quiet supersonic transport aircraft[64] | ||||
X-60 | Generation Orbit Launch Services | USAF | Hypersonic rocket | Unmanned | Air-launched rocket for hypersonic flight research[65] | |||
X-61 Gremlins | Dynetics | DARPA | 2020 | Unmanned | Air-launched and air-recoverable reconnaissance unmanned air vehicle (UAV)[66][67] | |||
X-62 VISTA | Lockheed Martin/Calspan | USAF | 2021 | Supersonic | Manned | Variable In-flight Simulator Test Aircraft. | First flew in 1993 as the NF-16D (for the MATV program). Designated the X-62A during a major research system upgrade in 2021. Assigned to the USAF Test Pilot School.[68] | |
X-63 | — | — | — | — | Number skipped | |||
X-64 | — | — | — | — | Number skipped | |||
X-65 CRANE | Aurora Flight Sciences | DARPA | 2025 | Subsonic | Control of Revolutionary Aircraft with Novel Effectors[69] | |||
X-66 | Boeing | NASA | 2028 | Transonic | Manned | Transonic Truss-Braced Wing[70] |
List of Tupolev aircraft
[edit]Image | Name | NATO | Year | Role | Number built | Status | Notes |
---|---|---|---|---|---|---|---|
Tu-1 | 1946 | Fighter | 1 | Prototype | |||
Tu-2 | "Bat" | 1941 | Medium bomber | 2,257 | |||
Tu-4 | "Bull" | 1947 | Strategic bomber | 847 | Copied from several seized Boeing B-29 Superfortress | ||
Tu-6 | 1946 | Reconnaissance | Alternate name for the Tu-2P | ||||
Tu-8 | 1947 | Medium bomber | 1 | Long-range variant of the Tu-2 | |||
Tu-10 | "Frosty" | 1943 | Medium bomber | High-altitude variant of the Tu-2 | |||
Tu-12 | 1947 | Medium bomber | 6 | First Soviet jet bomber, variant of the Tu-2 | |||
Tu-14 | "Bosun" | 1949 | Torpedo bomber | ~150 | Jet torpedo bomber | ||
Tu-18 | 1947 | Medium bomber | 0 | Jet variant of Tu-8 | |||
Tu-20 | "Bear" | 1952 | Bomber | ||||
Tu-144 | "Charger" | 1968 | Passenger | Retired | |||
Tu-160 | "Blackjack" | 1981 | Bomber | In service |
Kurchatov
[edit]Name | Type | Enrichment | Criticality | Shutdown | Power | Application |
---|---|---|---|---|---|---|
F-1 | ||||||
VVR-2 | ||||||
RFT | ||||||
MR | ||||||
IRT | ||||||
IR-8 | ||||||
IIN-3M "Gidra" | ||||||
GAMMA | ||||||
Argus | ||||||
OR | ||||||
Romashka | ||||||
SF-1 | ||||||
SF-3 | ||||||
SF-5 | ||||||
SF-7 | ||||||
Kvant | ||||||
MR model | ||||||
Delta | ||||||
UG | ||||||
RBMK | ||||||
B-1000 | ||||||
ASTRA | ||||||
EFIR-2M | ||||||
MAYAK | ||||||
"NARCIS"M2 | ||||||
GROG | ||||||
P | ||||||
ISKRA |
References
[edit]- ^ "National General Election VEP Turnout Rates, 1789-Present". United States Election Project. CQ Press. Archived from the original on July 25, 2014. Retrieved February 28, 2023.
- ^ Jenkins, Landis & Miller 2003, p. 5–7.
- ^ Jenkins, Landis & Miller 2003, p. 8.
- ^ Jenkins, Landis & Miller 2003, p. 9.
- ^ Jenkins, Landis & Miller 2003, p. 10.
- ^ Jenkins, Landis & Miller 2003, p. 11.
- ^ Jenkins, Landis & Miller 2003, p. 12.
- ^ Miller 1983.
- ^ Jenkins, Landis & Miller 2003, p. 13.
- ^ Jenkins, Landis & Miller 2003, p. 14.
- ^ Jenkins, Landis & Miller 2003, p. 15.
- ^ Jenkins, Landis & Miller 2003, p. 16.
- ^ Jenkins, Landis & Miller 2003, p. 17.
- ^ Jenkins, Landis & Miller 2003, p. 18.
- ^ Jenkins, Landis & Miller 2003, p. 19.
- ^ Jenkins, Landis & Miller 2003, p. 20.
- ^ Jenkins, Landis & Miller 2003, p. 21–22.
- ^ Jenkins, Landis & Miller 2003, p. 23.
- ^ "X-16". Global security, accessed 11 May 2010.
- ^ Jenkins, Landis & Miller 2003, p. 24.
- ^ Jenkins, Landis & Miller 2003, p. 25.
- ^ Jenkins, Landis & Miller 2003, p. 26.
- ^ a b c d Parsch 2024, "Missing Designations"
- ^ Jenkins, Landis & Miller 2003, p. 27.
- ^ Jenkins, Landis & Miller 2003, p. 28.
- ^ Jenkins, Landis & Miller 2003, p. 29.
- ^ Jenkins, Landis & Miller 2003, p. 30.
- ^ Jenkins, Landis & Miller 2003, p. 31.
- ^ Jenkins, Landis & Miller 2003, p. 32.
- ^ Jenkins, Landis & Miller 2003, p. 33.
- ^ Jenkins, Landis & Miller 2003, p. 34.
- ^ Jenkins, Landis & Miller 2003, p. 35.
- ^ Jenkins, Landis & Miller 2003, p. 36.
- ^ Jenkins, Landis & Miller 2003, p. 37.
- ^ Jenkins, Landis & Miller 2003, p. 38.
- ^ Jenkins, Landis & Miller 2003, p. 39.
- ^ Jenkins, Landis & Miller 2003, p. 40–41.
- ^ Jenkins, Landis & Miller 2003, p. 42.
- ^ Jenkins, Landis & Miller 2003, p. 43.
- ^ Jenkins, Landis & Miller 2003, p. 44–45.
- ^ Jenkins, Landis & Miller 2003, p. 46.
- ^ Jenkins, Landis & Miller 2003, p. 47.
- ^ Jenkins, Landis & Miller 2003, p. 48.
- ^ Jenkins, Landis & Miller 2003, p. 49.
- ^ Jenkins, Landis & Miller 2003, p. 50.
- ^ Jenkins, Landis & Miller 2003, p. 51.
- ^ Jenkins, Landis & Miller 2003, p. 52.
- ^ Jenkins, Landis & Miller 2003, p. 53.
- ^ Jenkins, Landis & Miller 2003, p. 54.
- ^ Jenkins, Landis & Miller 2003, p. 55.
- ^ Jenkins, Landis & Miller 2003, p. 56.
- ^ Jenkins, Landis & Miller 2003, p. 57.
- ^ Jenkins, Landis & Miller 2003, p. 58.
- ^ Parsch 2024, "DOD 4120.15-L"
- ^ Jenkins, Landis & Miller 2003, p. 60.
- ^ "X-51 Waverider makes historic hypersonic flight". US Air Force Public Affairs. 26 May 2010. Retrieved 27 May 2010.
- ^ "X-51 Scramjet Engine Demonstrator - WaveRider" globalsecurity.org. Accessed 2010-05-11.
- ^ Jordan 2006
- ^ 412015-L
- ^ Kaufman 2009
- ^ Norris 2012
- ^ a b Harrington, J.D.; Kamlet, Matt; Barnstorff, Kathy (17 June 2016). "NASA Hybrid Electric Research Plane Gets X Number, New Name". NASA.gov. NASA. Retrieved 17 June 2016.
- ^ The Air Force Valkyrie Drone, a Sidekick for Human-Piloted Planes, Will Fly This Year
- ^ Jim, Banke (27 June 2018). "NASA's Experimental Supersonic Aircraft Now Known as X-59 QueSST". NASA. Retrieved 28 June 2018.
- ^ "U.S. Air Force Designates GO1 Hypersonic Flight Research Vehicle as X-60A". generationorbit.com. 4 October 2018. Retrieved 4 October 2018.
- ^ "Earthquake damage delays Gremlins trial". Flight International. 24 September 2019. Retrieved 28 October 2019.
- ^ "Dynetics X-61A Gremlins makes first flight, but destroyed after parachute fails". Flight International. 17 January 2020. Retrieved 13 February 2020.
- ^ Giancarlo Casem (30 Jul 2021) NF-16D VISTA becomes X-62A, paves way for Skyborg autonomous flight tests
- ^ Hadley, Greg (2023-05-16). "Meet the X-65: DARPA's New Plane Has No External Control Surfaces". Air & Space Forces Magazine. Retrieved 2023-05-29.
- ^ O’Shea, Claire (12 June 2023). "Next Generation Experimental Aircraft Becomes NASA's Newest X-Plane". NASA. Retrieved 13 June 2023.