


default search action
10th COLT 1997: Nashville, Tennessee, USA
- Yoav Freund, Robert E. Schapire:
Proceedings of the Tenth Annual Conference on Computational Learning Theory, COLT 1997, Nashville, Tennessee, USA, July 6-9, 1997. ACM 1997, ISBN 0-89791-891-6
Invited Talk I
- Andrew R. Barron:
Information Theory in Probability, Statistics, Learning, and Neural Nets (Abstract). COLT 1997: 1
Session 1
- John Shawe-Taylor, Robert C. Williamson:
A PAC Analysis of a Bayesian Estimator. 2-9 - Tamás Horváth, Robert H. Sloan, György Turán:
Learning Logic Programs by Using the Product Homomorphism Method. 10-20
Session 2
- Philip M. Long:
On-line Evaluation and Prediction using Linear Functions. 21-31 - V. G. Vovk:
Derandomizing Stochastic Prediction Strategies. 32-44 - Avrim Blum, Carl Burch:
On-line Learning and the Metrical Task System Problem. 45-53
Session 3
- Wolfgang Maass, Michael Schmitt:
On the Complexity of Learning for a Spiking Neuron (Extended Abstract). 54-61 - Tom Bylander:
Learning Probabilistically Consistent Linear Threshold Functions. 62-71 - Claude-Nicolas Fiechter:
PAC Adaptive Control of Linear Systems. 72-80
Session 4
- Robert P. Daley, Bala Kalyanasundaram:
FINite Learning Capabilities and Their Limits. 81-89 - Kalvis Apsitis, Rusins Freivalds, Carl H. Smith:
Asymmetric Team Learning. 90-95 - Arun Sharma, Frank Stephan, Yuri Ventsov:
Generalized Notions of Mind Change Complexity. 96-108
Invited Talk II
- David Haussler:
A Brief Look at Some Machine Learning Problems in Genomics. 109-113
Session 5
- Fernando C. N. Pereira, Yoram Singer:
An Efficient Extension to Mixture Techniques for Prediction and Decision Trees. 114-121 - Ron Meir:
Performance Bounds for Nonlinear Time Series Prediction. 122-129
Session 6
- Scott E. Decatur, Oded Goldreich, Dana Ron:
Computational Sample Complexity. 130-142 - Adam Kowalczyk:
Dense Shattering and Teaching Dimensions for Differentiable Families (Extended Abstract). 143-151 - Michael J. Kearns, Dana Ron:
Algorithmic Stability and Sanity-Check Bounds for Leave-one-Out Cross-Validation. 152-162
Session 7
- Nicolò Cesa-Bianchi:
Analysis of Two Gradient-based Algorithms for On-line Regression. 163-170 - Adam J. Grove, Nick Littlestone, Dale Schuurmans:
General Convergence Results for Linear Discriminant Updates. 171-183 - Tom Bylander:
The Binary Exponentiated Gradient Algorithm for Learning Linear Functions. 184-192
Session 8
- Víctor Dalmau:
A Dichotomy Theorem for Learning Quantified Boolean Formulas. 193-200 - Yishay Mansour, Mariano Schain:
Learning with Maximum-Entropy Distributions. 201-210 - Nina Mishra, Leonard Pitt:
Generating all Maximal Independent Sets of Bounded-Degree Hypergraphs. 211-217
Session 9
- David P. Helmbold, Sandra Panizza:
Some Label Efficient Learning Results. 218-230 - Sally A. Goldman, Stephen Kwek, Stephen D. Scott:
Learning from Examples with Unspecified Attribute Values (Extended Abstract). 231-242 - Funda Ergün, Ravi Kumar, Ronitt Rubinfeld:
Learning Distributions from Random Walks. 243-249 - Kenji Yamanishi
:
Distributed Cooperative Bayesian Learning Strategies. 250-262
Session 10
- Susanne Kaufmann, Frank Stephan:
Resource Bounded Next Value and Explanatory Identification: Learning Automata, Patterns and Polynomials On-Line. 263-274 - William I. Gasarch, Andrew C. Y. Lee:
Inferring Answers to Queries. 275-284 - Dana Angluin, Martins Krikis:
Teachers, Learners and Black Boxes. 285-297
Joint Sessions with ICML
- Dana Angluin, Miklós Csürös:
Learning Markov Chains with Variable Memory Length from Noisy Output. 298-308 - Avrim Blum, Adam Kalai:
Universal Portfolios With and Without Transaction Costs. 309-313 - Dimitris Bertsimas, David Gamarnik, John N. Tsitsiklis:
Estimation of Time-Varying Parameters in Statistical Models: An Optimization Approach. 314-324 - Sally A. Goldman, Stephen Kwek, Stephen D. Scott:
Agnostic Learning of Geometric Patterns (Extended Abstract). 325-333
Tutorials
COLT 1997 Tutorials Web Server

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.