default search action
Rong Jin 0001
Person information
- affiliation: Alibaba Group, Machine Intelligence Technology, Bellevue, WA, USA
- affiliation (2003 - 2015): Michigan State University, Department of Computer Science & Engineering, East Lansing, MI, USA
- affiliation (PhD 2003): Carnegie Mellon University, Pittsburgh, PA, USA
Other persons with the same name
- Rong Jin — disambiguation page
- Rong Jin 0002 — Huazhong University of Science and Technology, School of Electronic Information and Communications, Science and Technology on Multi-Spectral Information Processing Laboratory, Wuhan, China (and 1 more)
- Rong Jin 0003 — California State University, Fullerton, CA, USA (and 1 more)
- Rong Jin 0004 — Indiana University Bloomington, School of Informatics and Computing, Bloomington, IN, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j61]Zhenxing Niu, Yuyao Sun, Qiguang Miao, Rong Jin, Gang Hua:
Towards Unified Robustness Against Both Backdoor and Adversarial Attacks. IEEE Trans. Pattern Anal. Mach. Intell. 46(12): 7589-7605 (2024) - [j60]Xiang Wang, Shiwei Zhang, Zhiwu Qing, Zhengrong Zuo, Changxin Gao, Rong Jin, Nong Sang:
HyRSM++: Hybrid relation guided temporal set matching for few-shot action recognition. Pattern Recognit. 147: 110110 (2024) - [c286]Zhi-Fan Wu, Chaojie Mao, Xue Wang, Jianwen Jiang, Yiliang Lv, Rong Jin:
Structured Model Probing: Empowering Efficient Transfer Learning by Structured Regularization. CVPR 2024: 16838-16847 - [c285]Yuanhao Xiong, Yixin Nie, Haotian Liu, Boxin Wang, Jun Chen, Rong Jin, Cho-Jui Hsieh, Lorenzo Torresani, Jie Lei:
UNICORN: A Unified Causal Video-Oriented Language-Modeling Framework for Temporal Video-Language Tasks. EMNLP 2024: 12983-12997 - [c284]Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, Rong Jin:
CARD: Channel Aligned Robust Blend Transformer for Time Series Forecasting. ICLR 2024 - [c283]Ziqing Ma, Wenwei Wang, Tian Zhou, Chao Chen, Bingqing Peng, Liang Sun, Rong Jin:
FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting. KDD 2024: 5532-5543 - [c282]Chiyu Zhang, Yifei Sun, Minghao Wu, Jun Chen, Jie Lei, Muhammad Abdul-Mageed, Rong Jin, Angli Liu, Ji Zhu, Sem Park, Ning Yao, Bo Long:
EmbSum: Leveraging the Summarization Capabilities of Large Language Models for Content-Based Recommendations. RecSys 2024: 1010-1015 - [i142]Zhenxing Niu, Haodong Ren, Xinbo Gao, Gang Hua, Rong Jin:
Jailbreaking Attack against Multimodal Large Language Model. CoRR abs/2402.02309 (2024) - [i141]Peisong Niu, Tian Zhou, Xue Wang, Liang Sun, Rong Jin:
Attention as Robust Representation for Time Series Forecasting. CoRR abs/2402.05370 (2024) - [i140]Ziqing Ma, Wenwei Wang, Tian Zhou, Chao Chen, Bingqing Peng, Liang Sun, Rong Jin:
FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting. CoRR abs/2402.05823 (2024) - [i139]Yanjun Zhao, Tian Zhou, Chao Chen, Liang Sun, Yi Qian, Rong Jin:
Sparse-VQ Transformer: An FFN-Free Framework with Vector Quantization for Enhanced Time Series Forecasting. CoRR abs/2402.05830 (2024) - [i138]Chiyu Zhang, Yifei Sun, Jun Chen, Jie Lei, Muhammad Abdul-Mageed, Sinong Wang, Rong Jin, Sem Park, Ning Yao, Bo Long:
SPAR: Personalized Content-Based Recommendation via Long Engagement Attention. CoRR abs/2402.10555 (2024) - [i137]Yifan Zhang, Weichen Yu, Qingsong Wen, Xue Wang, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan:
Debiasing Multimodal Large Language Models. CoRR abs/2403.05262 (2024) - [i136]Yifan Zhang, Weiqi Chen, Zhaoyang Zhu, Dalin Qin, Liang Sun, Xue Wang, Qingsong Wen, Zhang Zhang, Liang Wang, Rong Jin:
Addressing Concept Shift in Online Time Series Forecasting: Detect-then-Adapt. CoRR abs/2403.14949 (2024) - [i135]Chiyu Zhang, Yifei Sun, Minghao Wu, Jun Chen, Jie Lei, Muhammad Abdul-Mageed, Rong Jin, Angli Liu, Ji Zhu, Sem Park, Ning Yao, Bo Long:
EmbSum: Leveraging the Summarization Capabilities of Large Language Models for Content-Based Recommendations. CoRR abs/2405.11441 (2024) - [i134]Zhenxing Niu, Yuyao Sun, Qiguang Miao, Rong Jin, Gang Hua:
Towards Unified Robustness Against Both Backdoor and Adversarial Attacks. CoRR abs/2405.17929 (2024) - [i133]Zhenxing Niu, Yuyao Sun, Haodong Ren, Haoxuan Ji, Quan Wang, Xiaoke Ma, Gang Hua, Rong Jin:
Efficient LLM-Jailbreaking by Introducing Visual Modality. CoRR abs/2405.20015 (2024) - [i132]Yifan Zhang, Qingsong Wen, Chaoyou Fu, Xue Wang, Zhang Zhang, Liang Wang, Rong Jin:
Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models. CoRR abs/2406.08487 (2024) - [i131]Xue Wang, Tian Zhou, Jianqing Zhu, Jialin Liu, Kun Yuan, Tao Yao, Wotao Yin, Rong Jin, HanQin Cai:
S3Attention: Improving Long Sequence Attention with Smoothed Skeleton Sketching. CoRR abs/2408.08567 (2024) - [i130]Yuyao Sun, Zhenxing Niu, Gang Hua, Rong Jin:
Towards Aligned Data Removal via Twin Machine Unlearning. CoRR abs/2408.11433 (2024) - [i129]Yifan Zhang, Huanyu Zhang, Haochen Tian, Chaoyou Fu, Shuangqing Zhang, Junfei Wu, Feng Li, Kun Wang, Qingsong Wen, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan:
MME-RealWorld: Could Your Multimodal LLM Challenge High-Resolution Real-World Scenarios that are Difficult for Humans? CoRR abs/2408.13257 (2024) - [i128]Peiyuan Liu, Tian Zhou, Liang Sun, Rong Jin:
Mitigating Time Discretization Challenges with WeatherODE: A Sandwich Physics-Driven Neural ODE for Weather Forecasting. CoRR abs/2410.06560 (2024) - 2023
- [j59]Jingkai Zhou, Pichao Wang, Jiasheng Tang, Fan Wang, Qiong Liu, Hao Li, Rong Jin:
What Limits the Performance of Local Self-attention? Int. J. Comput. Vis. 131(10): 2516-2528 (2023) - [j58]Zhiwu Qing, Shiwei Zhang, Ziyuan Huang, Yi Xu, Xiang Wang, Changxin Gao, Rong Jin, Nong Sang:
Self-Supervised Learning from Untrimmed Videos via Hierarchical Consistency. IEEE Trans. Pattern Anal. Mach. Intell. 45(10): 12408-12426 (2023) - [j57]Qi Qi, Yi Xu, Wotao Yin, Rong Jin, Tianbao Yang:
Attentional-Biased Stochastic Gradient Descent. Trans. Mach. Learn. Res. 2023 (2023) - [j56]Zhiwu Qing, Ziyuan Huang, Shiwei Zhang, Mingqian Tang, Changxin Gao, Rong Jin, Marcelo H. Ang, Nong Sang:
ParamCrop: Parametric Cubic Cropping for Video Contrastive Learning. IEEE Trans. Multim. 25: 9002-9014 (2023) - [j55]Ming Yan, Haiyang Xu, Chenliang Li, Junfeng Tian, Bin Bi, Wei Wang, Xianzhe Xu, Ji Zhang, Songfang Huang, Fei Huang, Luo Si, Rong Jin:
Achieving Human Parity on Visual Question Answering. ACM Trans. Inf. Syst. 41(3): 79:1-79:40 (2023) - [c281]Shuning Chang, Pichao Wang, Ming Lin, Fan Wang, David Junhao Zhang, Rong Jin, Mike Zheng Shou:
Making Vision Transformers Efficient from A Token Sparsification View. CVPR 2023: 6195-6205 - [c280]Weihua Chen, Xianzhe Xu, Jian Jia, Hao Luo, Yaohua Wang, Fan Wang, Rong Jin, Xiuyu Sun:
Beyond Appearance: A Semantic Controllable Self-Supervised Learning Framework for Human-Centric Visual Tasks. CVPR 2023: 15050-15061 - [c279]Bingxu Mu, Zhenxing Niu, Le Wang, Xue Wang, Qiguang Miao, Rong Jin, Gang Hua:
Progressive Backdoor Erasing via connecting Backdoor and Adversarial Attacks. CVPR 2023: 20495-20503 - [c278]Yifan Zhang, Xue Wang, Jian Liang, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan:
Free Lunch for Domain Adversarial Training: Environment Label Smoothing. ICLR 2023 - [c277]Zhishuai Guo, Rong Jin, Jiebo Luo, Tianbao Yang:
FeDXL: Provable Federated Learning for Deep X-Risk Optimization. ICML 2023: 11934-11966 - [c276]Yifan Zhang, Xue Wang, Kexin Jin, Kun Yuan, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan:
AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation. ICML 2023: 41647-41676 - [c275]Yifan Zhang, Qingsong Wen, Xue Wang, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan:
OneNet: Enhancing Time Series Forecasting Models under Concept Drift by Online Ensembling. NeurIPS 2023 - [c274]Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin:
One Fits All: Power General Time Series Analysis by Pretrained LM. NeurIPS 2023 - [i127]Xiang Wang, Shiwei Zhang, Zhiwu Qing, Zhengrong Zuo, Changxin Gao, Rong Jin, Nong Sang:
HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition. CoRR abs/2301.03330 (2023) - [i126]Yifan Zhang, Xue Wang, Jian Liang, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan:
Free Lunch for Domain Adversarial Training: Environment Label Smoothing. CoRR abs/2302.00194 (2023) - [i125]Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin:
Power Time Series Forecasting by Pretrained LM. CoRR abs/2302.11939 (2023) - [i124]Shuning Chang, Pichao Wang, Ming Lin, Fan Wang, David Junhao Zhang, Rong Jin, Mike Zheng Shou:
Making Vision Transformers Efficient from A Token Sparsification View. CoRR abs/2303.08685 (2023) - [i123]Weihua Chen, Xianzhe Xu, Jian Jia, Hao Luo, Yaohua Wang, Fan Wang, Rong Jin, Xiuyu Sun:
Beyond Appearance: a Semantic Controllable Self-Supervised Learning Framework for Human-Centric Visual Tasks. CoRR abs/2303.17602 (2023) - [i122]Yifan Zhang, Xue Wang, Kexin Jin, Kun Yuan, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan:
AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation. CoRR abs/2304.12566 (2023) - [i121]Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, Rong Jin:
Make Transformer Great Again for Time Series Forecasting: Channel Aligned Robust Dual Transformer. CoRR abs/2305.12095 (2023) - [i120]Yifan Zhang, Qingsong Wen, Xue Wang, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan:
OneNet: Enhancing Time Series Forecasting Models under Concept Drift by Online Ensembling. CoRR abs/2309.12659 (2023) - [i119]Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin:
One Fits All: Universal Time Series Analysis by Pretrained LM and Specially Designed Adaptors. CoRR abs/2311.14782 (2023) - [i118]Yifan Zhang, Xue Wang, Tian Zhou, Kun Yuan, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan:
Model-free Test Time Adaptation for Out-Of-Distribution Detection. CoRR abs/2311.16420 (2023) - [i117]Chao Chen, Tian Zhou, Yanjun Zhao, Hui Liu, Liang Sun, Rong Jin:
SVQ: Sparse Vector Quantization for Spatiotemporal Forecasting. CoRR abs/2312.03406 (2023) - [i116]Yifan Zhang, Zhang Zhang, Liang Wang, Tieniu Tan, Rong Jin:
Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors. CoRR abs/2312.12918 (2023) - 2022
- [c273]Pichao Wang, Xue Wang, Hao Luo, Jingkai Zhou, Zhipeng Zhou, Fan Wang, Hao Li, Rong Jin:
Scaled ReLU Matters for Training Vision Transformers. AAAI 2022: 2495-2503 - [c272]Lianghua Huang, Yu Liu, Bin Wang, Pan Pan, Rong Jin:
A Trend-Driven Fashion Design System for Rapid Response Marketing in E-commerce. AAAI 2022: 13179-13181 - [c271]Zejiang Hou, Minghai Qin, Fei Sun, Xiaolong Ma, Kun Yuan, Yi Xu, Yen-Kuang Chen, Rong Jin, Yuan Xie, Sun-Yuan Kung:
CHEX: CHannel EXploration for CNN Model Compression. CVPR 2022: 12277-12288 - [c270]Zhiwu Qing, Shiwei Zhang, Ziyuan Huang, Yi Xu, Xiang Wang, Mingqian Tang, Changxin Gao, Rong Jin, Nong Sang:
Learning from Untrimmed Videos: Self-Supervised Video Representation Learning with Hierarchical Consistency. CVPR 2022: 13811-13821 - [c269]Qi Qian, Yuanhong Xu, Juhua Hu, Hao Li, Rong Jin:
Unsupervised Visual Representation Learning by Online Constrained K-Means. CVPR 2022: 16619-16628 - [c268]Xiang Wang, Shiwei Zhang, Zhiwu Qing, Mingqian Tang, Zhengrong Zuo, Changxin Gao, Rong Jin, Nong Sang:
Hybrid Relation Guided Set Matching for Few-shot Action Recognition. CVPR 2022: 19916-19925 - [c267]Benjia Zhou, Pichao Wang, Jun Wan, Yanyan Liang, Fan Wang, Du Zhang, Zhen Lei, Hao Li, Rong Jin:
Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition. CVPR 2022: 20122-20131 - [c266]Zhaoyuan Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li, Rong Jin:
TransFGU: A Top-Down Approach to Fine-Grained Unsupervised Semantic Segmentation. ECCV (29) 2022: 73-89 - [c265]Pichao Wang, Xue Wang, Fan Wang, Ming Lin, Shuning Chang, Hao Li, Rong Jin:
KVT: k-NN Attention for Boosting Vision Transformers. ECCV (24) 2022: 285-302 - [c264]Yuqi Zhang, Qi Qian, Chong Liu, Weihua Chen, Fan Wang, Hao Li, Rong Jin:
Graph Convolution for Re-Ranking in Person Re-Identification. ICASSP 2022: 2704-2708 - [c263]Yutong Feng, Jianwen Jiang, Mingqian Tang, Rong Jin, Yue Gao:
Rethinking Supervised Pre-Training for Better Downstream Transferring. ICLR 2022 - [c262]Xiaolong Ma, Minghai Qin, Fei Sun, Zejiang Hou, Kun Yuan, Yi Xu, Yanzhi Wang, Yen-Kuang Chen, Rong Jin, Yuan Xie:
Effective Model Sparsification by Scheduled Grow-and-Prune Methods. ICLR 2022 - [c261]Yichen Qian, Xiuyu Sun, Ming Lin, Zhiyu Tan, Rong Jin:
Entroformer: A Transformer-based Entropy Model for Learned Image Compression. ICLR 2022 - [c260]Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang, Hao Li, Rong Jin:
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation. ICLR 2022 - [c259]Zhenhong Sun, Ming Lin, Xiuyu Sun, Zhiyu Tan, Hao Li, Rong Jin:
MAE-DET: Revisiting Maximum Entropy Principle in Zero-Shot NAS for Efficient Object Detection. ICML 2022: 20810-20826 - [c258]Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, Rong Jin:
FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting. ICML 2022: 27268-27286 - [c257]Ziquan Liu, Yi Xu, Yuanhong Xu, Qi Qian, Hao Li, Xiangyang Ji, Antoni B. Chan, Rong Jin:
Improved Fine-Tuning by Better Leveraging Pre-Training Data. NeurIPS 2022 - [c256]Yaohua Wang, Fangyi Zhang, Ming Lin, Senzhang Wang, Xiuyu Sun, Rong Jin:
Robust Graph Structure Learning via Multiple Statistical Tests. NeurIPS 2022 - [c255]Xinwei Zhang, Jianwen Jiang, Yutong Feng, Zhi-Fan Wu, Xibin Zhao, Hai Wan, Mingqian Tang, Rong Jin, Yue Gao:
Grow and Merge: A Unified Framework for Continuous Categories Discovery. NeurIPS 2022 - [c254]Tian Zhou, Ziqing Ma, Xue Wang, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin:
FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting. NeurIPS 2022 - [i115]Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, Rong Jin:
FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting. CoRR abs/2201.12740 (2022) - [i114]Yichen Qian, Ming Lin, Xiuyu Sun, Zhiyu Tan, Rong Jin:
Entroformer: A Transformer-based Entropy Model for Learned Image Compression. CoRR abs/2202.05492 (2022) - [i113]Zejiang Hou, Minghai Qin, Fei Sun, Xiaolong Ma, Kun Yuan, Yi Xu, Yen-Kuang Chen, Rong Jin, Yuan Xie, Sun-Yuan Kung:
CHEX: CHannel EXploration for CNN Model Compression. CoRR abs/2203.15794 (2022) - [i112]Zhiwu Qing, Shiwei Zhang, Ziyuan Huang, Yi Xu, Xiang Wang, Mingqian Tang, Changxin Gao, Rong Jin, Nong Sang:
Learning from Untrimmed Videos: Self-Supervised Video Representation Learning with Hierarchical Consistency. CoRR abs/2204.03017 (2022) - [i111]Xiang Wang, Shiwei Zhang, Zhiwu Qing, Mingqian Tang, Zhengrong Zuo, Changxin Gao, Rong Jin, Nong Sang:
Hybrid Relation Guided Set Matching for Few-shot Action Recognition. CoRR abs/2204.13423 (2022) - [i110]Tian Zhou, Ziqing Ma, Xue Wang, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin:
FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting. CoRR abs/2205.08897 (2022) - [i109]Ziquan Liu, Yi Xu, Yuanhong Xu, Qi Qian, Hao Li, Rong Jin, Xiangyang Ji, Antoni B. Chan:
An Empirical Study on Distribution Shift Robustness From the Perspective of Pre-Training and Data Augmentation. CoRR abs/2205.12753 (2022) - [i108]Tian Zhou, Jianqing Zhu, Xue Wang, Ziqing Ma, Qingsong Wen, Liang Sun, Rong Jin:
TreeDRNet: A Robust Deep Model for Long Term Time Series Forecasting. CoRR abs/2206.12106 (2022) - [i107]Yaohua Wang, Fangyi Zhang, Ming Lin, Senzhang Wang, Xiuyu Sun, Rong Jin:
Robust Graph Structure Learning over Images via Multiple Statistical Tests. CoRR abs/2210.03956 (2022) - [i106]Xinwei Zhang, Jianwen Jiang, Yutong Feng, Zhi-Fan Wu, Xibin Zhao, Hai Wan, Mingqian Tang, Rong Jin, Yue Gao:
Grow and Merge: A Unified Framework for Continuous Categories Discovery. CoRR abs/2210.04174 (2022) - [i105]Zhishuai Guo, Rong Jin, Jiebo Luo, Tianbao Yang:
FedX: Federated Learning for Compositional Pairwise Risk Optimization. CoRR abs/2210.14396 (2022) - 2021
- [j54]Rong Jin, David Simchi-Levi, Li Wang, Xinshang Wang, Sen Yang:
Shrinking the Upper Confidence Bound: A Dynamic Product Selection Problem for Urban Warehouses. Manag. Sci. 67(8): 4756-4771 (2021) - [j53]Kang Zhao, Liuyihan Song, Yingya Zhang, Pan Pan, Yinghui Xu, Rong Jin:
ANN Softmax: Acceleration of Extreme Classification Training. Proc. VLDB Endow. 15(1): 1-10 (2021) - [c253]Yu Liu, Lianghua Huang, Pan Pan, Bin Wang, Yinghui Xu, Rong Jin:
Train a One-Million-Way Instance Classifier for Unsupervised Visual Representation Learning. AAAI 2021: 8706-8714 - [c252]Ziyuan Huang, Shiwei Zhang, Jianwen Jiang, Mingqian Tang, Rong Jin, Marcelo H. Ang:
Self-Supervised Motion Learning From Static Images. CVPR 2021: 1276-1285 - [c251]Li Hu, Peng Zhang, Bang Zhang, Pan Pan, Yinghui Xu, Rong Jin:
Learning Position and Target Consistency for Memory-Based Video Object Segmentation. CVPR 2021: 4144-4154 - [c250]Liuyihan Song, Kang Zhao, Pan Pan, Yu Liu, Yingya Zhang, Yinghui Xu, Rong Jin:
Communication Efficient SGD via Gradient Sampling With Bayes Prior. CVPR 2021: 12065-12074 - [c249]Lianghua Huang, Yu Liu, Bin Wang, Pan Pan, Yinghui Xu, Rong Jin:
Self-Supervised Video Representation Learning by Context and Motion Decoupling. CVPR 2021: 13886-13895 - [c248]Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, Rong Jin:
Zen-NAS: A Zero-Shot NAS for High-Performance Image Recognition. ICCV 2021: 337-346 - [c247]Yuanhong Xu, Qi Qian, Hao Li, Rong Jin, Juhua Hu:
Weakly Supervised Representation Learning with Coarse Labels. ICCV 2021: 10573-10581 - [c246]Yichen Qian, Zhiyu Tan, Xiuyu Sun, Ming Lin, Dongyang Li, Zhenhong Sun, Hao Li, Rong Jin:
Learning Accurate Entropy Model with Global Reference for Image Compression. ICLR 2021 - [c245]Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yufeng Li, Baigui Sun, Hao Li, Rong Jin:
Dash: Semi-Supervised Learning with Dynamic Thresholding. ICML 2021: 11525-11536 - [c244]Qi Qi, Zhishuai Guo, Yi Xu, Rong Jin, Tianbao Yang:
An Online Method for A Class of Distributionally Robust Optimization with Non-convex Objectives. NeurIPS 2021: 10067-10080 - [i104]Asaf Noy, Yi Xu, Yonathan Aflalo, Rong Jin:
On the Convergence of Deep Networks with Sample Quadratic Overparameterization. CoRR abs/2101.04243 (2021) - [i103]Jian Tan, Niv Nayman, Mengchang Wang, Rong Jin:
CobBO: Coordinate Backoff Bayesian Optimization. CoRR abs/2101.05147 (2021) - [i102]Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, Rong Jin:
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition. CoRR abs/2102.01063 (2021) - [i101]Xiangzeng Zhou, Pan Pan, Yun Zheng, Yinghui Xu, Rong Jin:
Large Scale Long-tailed Product Recognition System at Alibaba. CoRR abs/2102.04652 (2021) - [i100]Kang Zhao, Pan Pan, Yun Zheng, Yanhao Zhang, Changxu Wang, Yingya Zhang, Yinghui Xu, Rong Jin:
Large-Scale Visual Search with Binary Distributed Graph at Alibaba. CoRR abs/2102.04656 (2021) - [i99]Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Jianmin Wu, Yinghui Xu, Rong Jin:
Virtual ID Discovery from E-commerce Media at Alibaba: Exploiting Richness of User Click Behavior for Visual Search Relevance. CoRR abs/2102.04667 (2021) - [i98]Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Yingya Zhang, Xiaofeng Ren, Rong Jin:
Visual Search at Alibaba. CoRR abs/2102.04674 (2021) - [i97]Yu Liu, Lianghua Huang, Pan Pan, Bin Wang, Yinghui Xu, Rong Jin:
Train a One-Million-Way Instance Classifier for Unsupervised Visual Representation Learning. CoRR abs/2102.04848 (2021) - [i96]Liuyihan Song, Pan Pan, Kang Zhao, Hao Yang, Yiming Chen, Yingya Zhang, Yinghui Xu, Rong Jin:
Large-Scale Training System for 100-Million Classification at Alibaba. CoRR abs/2102.06025 (2021) - [i95]Ziyuan Huang, Shiwei Zhang, Jianwen Jiang, Mingqian Tang, Rong Jin, Marcelo H. Ang:
Self-supervised Motion Learning from Static Images. CoRR abs/2104.00240 (2021) - [i94]Lianghua Huang, Yu Liu, Bin Wang, Pan Pan, Yinghui Xu, Rong Jin:
Self-supervised Video Representation Learning by Context and Motion Decoupling. CoRR abs/2104.00862 (2021) - [i93]Yi Xu, Qi Qian, Hao Li, Rong Jin:
A Theoretical Analysis of Learning with Noisily Labeled Data. CoRR abs/2104.04114 (2021) - [i92]Li Hu, Peng Zhang, Bang Zhang, Pan Pan, Yinghui Xu, Rong Jin:
Learning Position and Target Consistency for Memory-based Video Object Segmentation. CoRR abs/2104.04329 (2021) - [i91]Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, Tianbao Yang:
On Stochastic Moving-Average Estimators for Non-Convex Optimization. CoRR abs/2104.14840 (2021) - [i90]Yi Xu, Qi Qian, Hao Li, Rong Jin:
Why Does Multi-Epoch Training Help? CoRR abs/2105.06015 (2021) - [i89]Qi Qian, Yuanhong Xu, Juhua Hu, Hao Li, Rong Jin:
Unsupervised Visual Representation Learning by Online Constrained K-Means. CoRR abs/2105.11527 (2021) - [i88]Pichao Wang, Xue Wang, Fan Wang, Ming Lin, Shuning Chang, Wen Xie, Hao Li, Rong Jin:
KVT: k-NN Attention for Boosting Vision Transformers. CoRR abs/2106.00515 (2021) - [i87]Xiaolong Ma, Minghai Qin, Fei Sun, Zejiang Hou, Kun Yuan, Yi Xu, Yanzhi Wang, Yen-Kuang Chen, Rong Jin, Yuan Xie:
Effective Model Sparsification by Scheduled Grow-and-Prune Methods. CoRR abs/2106.09857 (2021) - [i86]Yuqi Zhang, Qian Qi, Chong Liu, Weihua Chen, Fan Wang, Hao Li, Rong Jin:
Graph Convolution for Re-ranking in Person Re-identification. CoRR abs/2107.02220 (2021) - [i85]Zhiwu Qing, Ziyuan Huang, Shiwei Zhang, Mingqian Tang, Changxin Gao, Marcelo H. Ang Jr., Rong Jin, Nong Sang:
ParamCrop: Parametric Cubic Cropping for Video Contrastive Learning. CoRR abs/2108.10501 (2021) - [i84]Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yufeng Li, Baigui Sun, Hao Li, Rong Jin:
Dash: Semi-Supervised Learning with Dynamic Thresholding. CoRR abs/2109.00650 (2021) - [i83]Pichao Wang, Xue Wang, Hao Luo, Jingkai Zhou, Zhipeng Zhou, Fan Wang, Hao Li, Rong Jin:
Scaled ReLU Matters for Training Vision Transformers. CoRR abs/2109.03810 (2021) - [i82]Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang, Hao Li, Rong Jin:
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation. CoRR abs/2109.06165 (2021) - [i81]Yutong Feng, Jianwen Jiang, Mingqian Tang, Rong Jin, Yue Gao:
Rethinking supervised pre-training for better downstream transferring. CoRR abs/2110.06014 (2021) - [i80]Niv Nayman, Yonathan Aflalo, Asaf Noy, Rong Jin, Lihi Zelnik-Manor:
IQNAS: Interpretable Integer Quadratic Programming Neural Architecture Search. CoRR abs/2110.12399 (2021) - [i79]Ming Yan, Haiyang Xu, Chenliang Li, Junfeng Tian, Bin Bi, Wei Wang, Weihua Chen, Xianzhe Xu, Fan Wang, Zheng Cao, Zhicheng Zhang, Qiyu Zhang, Ji Zhang, Songfang Huang, Fei Huang, Luo Si, Rong Jin:
Achieving Human Parity on Visual Question Answering. CoRR abs/2111.08896 (2021) - [i78]Hao Luo, Pichao Wang, Yi Xu, Feng Ding, Yanxin Zhou, Fan Wang, Hao Li, Rong Jin:
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification. CoRR abs/2111.12084 (2021) - [i77]Ziquan Liu, Yi Xu, Yuanhong Xu, Qi Qian, Hao Li, Antoni B. Chan, Rong Jin:
Improved Fine-tuning by Leveraging Pre-training Data: Theory and Practice. CoRR abs/2111.12292 (2021) - [i76]Zhenhong Sun, Ming Lin, Xiuyu Sun, Zhiyu Tan, Rong Jin:
Revisiting Efficient Object Detection Backbones from Zero-Shot Neural Architecture Search. CoRR abs/2111.13336 (2021) - [i75]Zhaoyuan Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li, Rong Jin:
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation. CoRR abs/2112.01515 (2021) - [i74]Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, Tianbao Yang:
A Novel Convergence Analysis for Algorithms of the Adam Family. CoRR abs/2112.03459 (2021) - [i73]Benjia Zhou, Pichao Wang, Jun Wan, Yanyan Liang, Fan Wang, Du Zhang, Zhen Lei, Hao Li, Rong Jin:
Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition. CoRR abs/2112.09129 (2021) - [i72]Jingkai Zhou, Pichao Wang, Fan Wang, Qiong Liu, Hao Li, Rong Jin:
ELSA: Enhanced Local Self-Attention for Vision Transformer. CoRR abs/2112.12786 (2021) - 2020
- [j52]Tianbao Yang, Lijun Zhang, Qihang Lin, Shenghuo Zhu, Rong Jin:
High-dimensional model recovery from random sketched data by exploring intrinsic sparsity. Mach. Learn. 109(5): 899-938 (2020) - [j51]Faraz Ahmed, Alex X. Liu, Rong Jin:
Publishing Social Network Graph Eigenspectrum With Privacy Guarantees. IEEE Trans. Netw. Sci. Eng. 7(2): 892-906 (2020) - [c243]Xiangzeng Zhou, Pan Pan, Yun Zheng, Yinghui Xu, Rong Jin:
Large Scale Long-tailed Product Recognition System at Alibaba. CIKM 2020: 3353-3356 - [c242]Qi Qian, Lei Chen, Hao Li, Rong Jin:
DR Loss: Improving Object Detection by Distributional Ranking. CVPR 2020: 12161-12169 - [c241]Liang Han, Zhaozheng Yin, Zhurong Xia, Li Guo, Mingqian Tang, Rong Jin:
Price Suggestion for Online Second-hand Items. ICPR 2020: 5920-5927 - [c240]Yang Jiao, Liang Han, Rong Jin, Yi-Jung Su, Chiente Ho, Li Yin, Yun Li, Long Chen, Zhen Chen, Lu Liu, Zhuyu He, Yu Yan, Jun He, Jun Mao, Xiaotao Zai, Xuejun Wu, Yongquan Zhou, Mingqiu Gu, Guocai Zhu, Rong Zhong, Wenyuan Lee, Ping Chen, Yiping Chen, Weiliang Li, Deyu Xiao, Qing Yan, Mingyuan Zhuang, Jiejun Chen, Yun Tian, Yingzi Lin, Wei Wu, Hao Li, Zesheng Dou:
7.2 A 12nm Programmable Convolution-Efficient Neural-Processing-Unit Chip Achieving 825TOPS. ISSCC 2020: 136-140 - [c239]Liuyihan Song, Pan Pan, Kang Zhao, Hao Yang, Yiming Chen, Yingya Zhang, Yinghui Xu, Rong Jin:
Large-Scale Training System for 100-Million Classification at Alibaba. KDD 2020: 2909-2930 - [c238]Liang Han, Zhaozheng Yin, Zhurong Xia, Minqian Tang, Rong Jin:
Price Suggestion for Online Second-hand Items with Texts and Images. ACM Multimedia 2020: 2784-2792 - [c237]Rong Jin:
Large-scale Multi-modal Search and QA at Alibaba. SIGIR 2020: 8 - [i71]Yuanhong Xu, Qi Qian, Hao Li, Rong Jin, Juhua Hu:
Representation Learning with Fine-grained Patterns. CoRR abs/2005.09681 (2020) - [i70]Qi Qi, Zhishuai Guo, Yi Xu, Rong Jin, Tianbao Yang:
A Practical Online Method for Distributionally Deep Robust Optimization. CoRR abs/2006.10138 (2020) - [i69]Yi Xu, Yuanhong Xu, Qi Qian, Hao Li, Rong Jin:
Towards Understanding Label Smoothing. CoRR abs/2006.11653 (2020) - [i68]Ming Lin, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, Rong Jin:
Neural Architecture Design for GPU-Efficient Networks. CoRR abs/2006.14090 (2020) - [i67]Yi Xu, Asaf Noy, Ming Lin, Qi Qian, Hao Li, Rong Jin:
WeMix: How to Better Utilize Data Augmentation. CoRR abs/2010.01267 (2020) - [i66]Yichen Qian, Zhiyu Tan, Xiuyu Sun, Ming Lin, Dongyang Li, Zhenhong Sun, Hao Li, Rong Jin:
Learning Accurate Entropy Model with Global Reference for Image Compression. CoRR abs/2010.08321 (2020) - [i65]Liang Han, Zhaozheng Yin, Zhurong Xia, Mingqian Tang, Rong Jin:
Price Suggestion for Online Second-hand Items with Texts and Images. CoRR abs/2012.06008 (2020) - [i64]Liang Han, Zhaozheng Yin, Zhurong Xia, Li Guo, Mingqian Tang, Rong Jin:
Vision-based Price Suggestion for Online Second-hand Items. CoRR abs/2012.06009 (2020) - [i63]Qi Qi, Yi Xu, Rong Jin, Wotao Yin, Tianbao Yang:
Attentional Biased Stochastic Gradient for Imbalanced Classification. CoRR abs/2012.06951 (2020)
2010 – 2019
- 2019
- [j50]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion. J. Mach. Learn. Res. 20: 97:1-97:22 (2019) - [j49]Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu, Zhi-Hua Zhou:
A simple homotopy proximal mapping algorithm for compressive sensing. Mach. Learn. 108(6): 1019-1056 (2019) - [c236]Yu-Hang Zhou, Chen Liang, Nan Li, Cheng Yang, Shenghuo Zhu, Rong Jin:
Robust Online Matching with User Arrival Distribution Drift. AAAI 2019: 459-466 - [c235]Ming Lin, Shuang Qiu, Jieping Ye, Xiaomin Song, Qi Qian, Liang Sun, Shenghuo Zhu, Rong Jin:
Which Factorization Machine Modeling Is Better: A Theoretical Answer with Optimal Guarantee. AAAI 2019: 4312-4319 - [c234]Qi Qian, Shenghuo Zhu, Jiasheng Tang, Rong Jin, Baigui Sun, Hao Li:
Robust Optimization over Multiple Domains. AAAI 2019: 4739-4746 - [c233]Mingdong Ou, Nan Li, Cheng Yang, Shenghuo Zhu, Rong Jin:
Semi-Parametric Sampling for Stochastic Bandits with Many Arms. AAAI 2019: 7933-7940 - [c232]Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Jianmin Wu, Yinghui Xu, Rong Jin:
Virtual ID Discovery from E-commerce Media at Alibaba: Exploiting Richness of User Click Behavior for Visual Search Relevance. CIKM 2019: 2489-2497 - [c231]Kang Zhao, Pan Pan, Yun Zheng, Yanhao Zhang, Changxu Wang, Yingya Zhang, Yinghui Xu, Rong Jin:
Large-Scale Visual Search with Binary Distributed Graph at Alibaba. CIKM 2019: 2567-2575 - [c230]Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Tacoma Tacoma, Hao Li, Rong Jin:
SoftTriple Loss: Deep Metric Learning Without Triplet Sampling. ICCV 2019: 6449-6457 - [c229]Hesen Chen, Ming Lin, Xiuyu Sun, Qian Qi, Hao Li, Rong Jin:
MuffNet: Multi-Layer Feature Federation for Mobile Deep Learning. ICCV Workshops 2019: 2943-2952 - [c228]Yi Xu, Qi Qi, Qihang Lin, Rong Jin, Tianbao Yang:
Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence. ICML 2019: 6942-6951 - [c227]Hao Yu, Rong Jin:
On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization. ICML 2019: 7174-7183 - [c226]Hao Yu, Rong Jin, Sen Yang:
On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization. ICML 2019: 7184-7193 - [c225]Yi Peng, Miao Xie, Jiahao Liu, Xuying Meng, Nan Li, Cheng Yang, Tao Yao, Rong Jin:
A Practical Semi-Parametric Contextual Bandit. IJCAI 2019: 3246-3252 - [c224]Yi Xu, Zhuoning Yuan, Sen Yang, Rong Jin, Tianbao Yang:
On the Convergence of (Stochastic) Gradient Descent with Extrapolation for Non-Convex Minimization. IJCAI 2019: 4003-4009 - [c223]Ming Lin, Xiaomin Song, Qi Qian, Hao Li, Liang Sun, Shenghuo Zhu, Rong Jin:
Robust Gaussian Process Regression for Real-Time High Precision GPS Signal Enhancement. KDD 2019: 2838-2847 - [c222]Liang Han, Zhaozheng Yin, Zhurong Xia, Li Guo, Mingqian Tang, Rong Jin:
Vision-based Price Suggestion for Online Second-hand Items. ACM Multimedia 2019: 1988-1996 - [c221]Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong Jin, Lihi Zelnik-Manor:
XNAS: Neural Architecture Search with Expert Advice. NeurIPS 2019: 1975-1985 - [c220]Zhuoning Yuan, Yan Yan, Rong Jin, Tianbao Yang:
Stagewise Training Accelerates Convergence of Testing Error Over SGD. NeurIPS 2019: 2604-2614 - [c219]Yi Xu, Rong Jin, Tianbao Yang:
Non-asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems. NeurIPS 2019: 2626-2636 - [c218]Yi Xu, Shenghuo Zhu, Sen Yang, Chi Zhang, Rong Jin, Tianbao Yang:
Learning with Non-Convex Truncated Losses by SGD. UAI 2019: 701-711 - [i62]Ming Lin, Shuang Qiu, Jieping Ye, Xiaomin Song, Qi Qian, Liang Sun, Shenghuo Zhu, Rong Jin:
Which Factorization Machine Modeling is Better: A Theoretical Answer with Optimal Guarantee. CoRR abs/1901.11149 (2019) - [i61]Rong Jin, David Simchi-Levi, Li Wang, Xinshang Wang, Sen Yang:
Conservative Exploration for Semi-Bandits with Linear Generalization: A Product Selection Problem for Urban Warehouses. CoRR abs/1903.07844 (2019) - [i60]Hao Yu, Rong Jin, Sen Yang:
On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization. CoRR abs/1905.03817 (2019) - [i59]Hao Yu, Rong Jin:
On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization. CoRR abs/1905.04346 (2019) - [i58]Ming Lin, Xiaomin Song, Qi Qian, Hao Li, Liang Sun, Shenghuo Zhu, Rong Jin:
Robust Gaussian Process Regression for Real-Time High Precision GPS Signal Enhancement. CoRR abs/1906.01095 (2019) - [i57]Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong Jin, Lihi Zelnik-Manor:
XNAS: Neural Architecture Search with Expert Advice. CoRR abs/1906.08031 (2019) - [i56]Qi Qian, Lei Chen, Hao Li, Rong Jin:
DR Loss: Improving Object Detection by Distributional Ranking. CoRR abs/1907.10156 (2019) - [i55]Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, Rong Jin:
SoftTriple Loss: Deep Metric Learning Without Triplet Sampling. CoRR abs/1909.05235 (2019) - 2018
- [c217]Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, Rong Jin:
Extremely Low Bit Neural Network: Squeeze the Last Bit Out With ADMM. AAAI 2018: 3466-3473 - [c216]Qi Qian, Jiasheng Tang, Hao Li, Shenghuo Zhu, Rong Jin:
Large-Scale Distance Metric Learning With Uncertainty. CVPR 2018: 8542-8550 - [c215]Bin Wang, Pan Pan, Qinjie Xiao, Likang Luo, Xiaofeng Ren, Rong Jin, Xiaogang Jin:
Seamless Color Mapping for 3D Reconstruction with Consumer-Grade Scanning Devices. ECCV Workshops (1) 2018: 633-648 - [c214]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Dynamic Regret of Strongly Adaptive Methods. ICML 2018: 5877-5886 - [c213]Mingdong Ou, Nan Li, Shenghuo Zhu, Rong Jin:
Multinomial Logit Bandit with Linear Utility Functions. IJCAI 2018: 2602-2608 - [c212]Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Yingya Zhang, Xiaofeng Ren, Rong Jin:
Visual Search at Alibaba. KDD 2018: 993-1001 - [c211]Mingrui Liu, Xiaoxuan Zhang, Lijun Zhang, Rong Jin, Tianbao Yang:
Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions. NeurIPS 2018: 4683-4694 - [c210]Yi Xu, Rong Jin, Tianbao Yang:
First-order Stochastic Algorithms for Escaping From Saddle Points in Almost Linear Time. NeurIPS 2018: 5535-5545 - [r2]Tianbao Yang, Rong Jin, Yun Chi, Shenghuo Zhu:
Combining Link and Content for Community Detection. Encyclopedia of Social Network Analysis and Mining. 2nd Ed. 2018 - [i54]Mingdong Ou, Nan Li, Shenghuo Zhu, Rong Jin:
Multinomial Logit Bandit with Linear Utility Functions. CoRR abs/1805.02971 (2018) - [i53]Mingrui Liu, Xiaoxuan Zhang, Lijun Zhang, Rong Jin, Tianbao Yang:
Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions. CoRR abs/1805.04577 (2018) - [i52]Qi Qian, Shenghuo Zhu, Jiasheng Tang, Rong Jin, Baigui Sun, Hao Li:
Robust Optimization over Multiple Domains. CoRR abs/1805.07588 (2018) - [i51]Yi Xu, Shenghuo Zhu, Sen Yang, Chi Zhang, Rong Jin, Tianbao Yang:
Learning with Non-Convex Truncated Losses by SGD. CoRR abs/1805.07880 (2018) - [i50]Qi Qian, Jiasheng Tang, Hao Li, Shenghuo Zhu, Rong Jin:
Large-scale Distance Metric Learning with Uncertainty. CoRR abs/1805.10384 (2018) - [i49]Tianbao Yang, Yan Yan, Zhuoning Yuan, Rong Jin:
Why Does Stagewise Training Accelerate Convergence of Testing Error Over SGD? CoRR abs/1812.03934 (2018) - 2017
- [j48]Juhua Hu, Qi Qian, Jian Pei, Rong Jin, Shenghuo Zhu:
Finding multiple stable clusterings. Knowl. Inf. Syst. 51(3): 991-1021 (2017) - [j47]Weizhong Zhang, Lijun Zhang, Zhongming Jin, Rong Jin, Deng Cai, Xuelong Li, Ronghua Liang, Xiaofei He:
Sparse Learning with Stochastic Composite Optimization. IEEE Trans. Pattern Anal. Mach. Intell. 39(6): 1223-1236 (2017) - [c209]Zhe Li, Tianbao Yang, Lijun Zhang, Rong Jin:
A Two-Stage Approach for Learning a Sparse Model with Sharp Excess Risk Analysis. AAAI 2017: 2224-2230 - [c208]Lijun Zhang, Tianbao Yang, Rong Jin:
Empirical Risk Minimization for Stochastic Convex Optimization: $O(1/n)$- and $O(1/n^2)$-type of Risk Bounds. COLT 2017: 1954-1979 - [c207]Luan Tran, Xiaoming Liu, Jiayu Zhou, Rong Jin:
Missing Modalities Imputation via Cascaded Residual Autoencoder. CVPR 2017: 4971-4980 - [c206]Rong Jin:
Deep Learning at Alibaba. IJCAI 2017: 11-16 - [c205]Gang Liu, Qi Qian, Zhibin Wang, Qingen Zhao, Tianzhou Wang, Hao Li, Jian Xue, Shenghuo Zhu, Rong Jin, Tuo Zhao:
The Opensesame NIST 2016 Speaker Recognition Evaluation System. INTERSPEECH 2017: 2854-2858 - [c204]Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, Zhi-Hua Zhou:
Improved Dynamic Regret for Non-degenerate Functions. NIPS 2017: 732-741 - [i48]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Strongly Adaptive Regret Implies Optimally Dynamic Regret. CoRR abs/1701.07570 (2017) - [i47]Lijun Zhang, Tianbao Yang, Rong Jin:
Empirical Risk Minimization for Stochastic Convex Optimization: O(1/n)- and O(1/n2)-type of Risk Bounds. CoRR abs/1702.02030 (2017) - [i46]Cong Leng, Hao Li, Shenghuo Zhu, Rong Jin:
Extremely Low Bit Neural Network: Squeeze the Last Bit Out with ADMM. CoRR abs/1707.09870 (2017) - 2016
- [j46]Wei Gao, Lu Wang, Rong Jin, Shenghuo Zhu, Zhi-Hua Zhou:
One-pass AUC optimization. Artif. Intell. 236: 1-29 (2016) - [j45]Ming Lin, Lijun Zhang, Rong Jin, Shifeng Weng, Changshui Zhang:
Online kernel learning with nearly constant support vectors. Neurocomputing 179: 26-36 (2016) - [j44]Tianbao Yang, Rong Jin, Shenghuo Zhu, Qihang Lin:
On Data Preconditioning for Regularized Loss Minimization. Mach. Learn. 103(1): 57-79 (2016) - [c203]Zhe Li, Tianbao Yang, Lijun Zhang, Rong Jin:
Fast and Accurate Refined Nyström-Based Kernel SVM. AAAI 2016: 1830-1836 - [c202]Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, Zhi-Hua Zhou:
Stochastic Optimization for Kernel PCA. AAAI 2016: 2315-2322 - [c201]Weizhong Zhang, Lijun Zhang, Rong Jin, Deng Cai, Xiaofei He:
Accelerated Sparse Linear Regression via Random Projection. AAAI 2016: 2337-2343 - [c200]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Sparse Learning for Large-Scale and High-Dimensional Data: A Randomized Convex-Concave Optimization Approach. ALT 2016: 83-97 - [c199]Rong Jin:
Large-scale Robust Online Matching and Its Application in E-commerce. CIKM 2016: 1351 - [c198]Faraz Ahmed, Alex X. Liu, Rong Jin:
Social Graph Publishing with Privacy Guarantees. ICDCS 2016: 447-456 - [c197]Lijun Zhang, Tianbao Yang, Rong Jin, Yichi Xiao, Zhi-Hua Zhou:
Online Stochastic Linear Optimization under One-bit Feedback. ICML 2016: 392-401 - [c196]Tianbao Yang, Lijun Zhang, Rong Jin, Jinfeng Yi:
Tracking Slowly Moving Clairvoyant: Optimal Dynamic Regret of Online Learning with True and Noisy Gradient. ICML 2016: 449-457 - [i45]Tianbao Yang, Lijun Zhang, Rong Jin, Jinfeng Yi:
Tracking Slowly Moving Clairvoyant: Optimal Dynamic Regret of Online Learning with True and Noisy Gradient. CoRR abs/1605.04638 (2016) - [i44]Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, Zhi-Hua Zhou:
Improved dynamic regret for non-degeneracy functions. CoRR abs/1608.03933 (2016) - 2015
- [j43]Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Shenghuo Zhu:
An efficient primal dual prox method for non-smooth optimization. Mach. Learn. 98(3): 369-406 (2015) - [j42]Qi Qian, Rong Jin, Jinfeng Yi, Lijun Zhang, Shenghuo Zhu:
Efficient distance metric learning by adaptive sampling and mini-batch stochastic gradient descent (SGD). Mach. Learn. 99(3): 353-372 (2015) - [j41]Songhe Feng, Zheyun Feng, Rong Jin:
Learning to Rank Image Tags With Limited Training Examples. IEEE Trans. Image Process. 24(4): 1223-1234 (2015) - [c195]Zenglin Xu, Rong Jin, Bin Shen, Shenghuo Zhu:
Nystrom Approximation for Sparse Kernel Methods: Theoretical Analysis and Empirical Evaluation. AAAI 2015: 3115-3121 - [c194]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Online Bandit Learning for a Special Class of Non-Convex Losses. AAAI 2015: 3158-3164 - [c193]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
A Simple Homotopy Algorithm for Compressive Sensing. AISTATS 2015 - [c192]Radha Chitta, Anil K. Jain, Rong Jin:
Sparse Kernel Clustering of Massive High-Dimensional Data sets with Large Number of Clusters. PIKM@CIKM 2015: 11-18 - [c191]Xiaojia Pu, Rong Jin, Gangshan Wu, Dingyi Han, Gui-Rong Xue:
Topic Modeling in Semantic Space with Keywords. CIKM 2015: 1141-1150 - [c190]Mehrdad Mahdavi, Lijun Zhang, Rong Jin:
Lower and Upper Bounds on the Generalization of Stochastic Exponentially Concave Optimization. COLT 2015: 1305-1320 - [c189]Qi Qian, Rong Jin, Shenghuo Zhu, Yuanqing Lin:
Fine-grained visual categorization via multi-stage metric learning. CVPR 2015: 3716-3724 - [c188]Juhua Hu, Qi Qian, Jian Pei, Rong Jin, Shenghuo Zhu:
Finding Multiple Stable Clusterings. ICDM 2015: 171-180 - [c187]Radha Chitta, Rong Jin, Anil K. Jain:
Stream Clustering: Efficient Kernel-Based Approximation Using Importance Sampling. ICDM Workshops 2015: 607-614 - [c186]Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu:
An Explicit Sampling Dependent Spectral Error Bound for Column Subset Selection. ICML 2015: 135-143 - [c185]Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu:
Theory of Dual-sparse Regularized Randomized Reduction. ICML 2015: 305-314 - [c184]Miao Xu, Rong Jin, Zhi-Hua Zhou:
CUR Algorithm for Partially Observed Matrices. ICML 2015: 1412-1421 - [c183]Wenliang Zhong, Rong Jin, Cheng Yang, Xiaowei Yan, Qi Zhang, Qiang Li:
Stock Constrained Recommendation in Tmall. KDD 2015: 2287-2296 - [c182]Tianbao Yang, Qihang Lin, Rong Jin:
Big Data Analytics: Optimization and Randomization. KDD 2015: 2327 - [i43]Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu:
Theory of Dual-sparse Regularized Randomized Reduction. CoRR abs/1504.03991 (2015) - [i42]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Analysis of Nuclear Norm Regularization for Full-rank Matrix Completion. CoRR abs/1504.06817 (2015) - [i41]Tianbao Yang, Lijun Zhang, Qihang Lin, Rong Jin:
Fast Sparse Least-Squares Regression with Non-Asymptotic Guarantees. CoRR abs/1507.05185 (2015) - [i40]Qi Qian, Rong Jin, Lijun Zhang, Shenghuo Zhu:
Towards Making High Dimensional Distance Metric Learning Practical. CoRR abs/1509.04355 (2015) - [i39]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Online Stochastic Linear Optimization under One-bit Feedback. CoRR abs/1509.07728 (2015) - [i38]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Stochastic Proximal Gradient Descent for Nuclear Norm Regularization. CoRR abs/1511.01664 (2015) - [i37]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Sparse Learning for Large-scale and High-dimensional Data: A Randomized Convex-concave Optimization Approach. CoRR abs/1511.03766 (2015) - [i36]Qi Qian, Inci M. Baytas, Rong Jin, Anil K. Jain, Shenghuo Zhu:
Similarity Learning via Adaptive Regression and Its Application to Image Retrieval. CoRR abs/1512.01728 (2015) - 2014
- [j40]Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Shenghuo Zhu:
Regret bounded by gradual variation for online convex optimization. Mach. Learn. 95(2): 183-223 (2014) - [j39]Hao Xia, Steven C. H. Hoi, Rong Jin, Peilin Zhao:
Online Multiple Kernel Similarity Learning for Visual Search. IEEE Trans. Pattern Anal. Mach. Intell. 36(3): 536-549 (2014) - [j38]Serhat Selcuk Bucak, Rong Jin, Anil K. Jain:
Multiple Kernel Learning for Visual Object Recognition: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 36(7): 1354-1369 (2014) - [j37]Sheng-Jun Huang, Rong Jin, Zhi-Hua Zhou:
Active Learning by Querying Informative and Representative Examples. IEEE Trans. Pattern Anal. Mach. Intell. 36(10): 1936-1949 (2014) - [j36]Lijun Zhang, Mehrdad Mahdavi, Rong Jin, Tianbao Yang, Shenghuo Zhu:
Random Projections for Classification: A Recovery Approach. IEEE Trans. Inf. Theory 60(11): 7300-7316 (2014) - [j35]Jialei Wang, Peilin Zhao, Steven C. H. Hoi, Rong Jin:
Online Feature Selection and Its Applications. IEEE Trans. Knowl. Data Eng. 26(3): 698-710 (2014) - [c181]Weizhong Zhang, Lijun Zhang, Yao Hu, Rong Jin, Deng Cai, Xiaofei He:
Sparse Learning for Stochastic Composite Optimization. AAAI 2014: 893-900 - [c180]Jinfeng Yi, Jun Wang, Rong Jin:
Privacy and Regression Model Preserved Learning. AAAI 2014: 1341-1347 - [c179]Zheyun Feng, Songhe Feng, Rong Jin, Anil K. Jain:
Image Tag Completion by Noisy Matrix Recovery. ECCV (7) 2014: 424-438 - [c178]Jinfeng Yi, Lijun Zhang, Jun Wang, Rong Jin, Anil K. Jain:
A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data. ICML 2014: 658-666 - [c177]Lijun Zhang, Jinfeng Yi, Rong Jin:
Efficient Algorithms for Robust One-bit Compressive Sensing. ICML 2014: 820-828 - [c176]Qi Qian, Juhua Hu, Rong Jin, Jian Pei, Shenghuo Zhu:
Distance metric learning using dropout: a structured regularization approach. KDD 2014: 323-332 - [c175]Tianbao Yang, Rong Jin:
Extracting Certainty from Uncertainty: Transductive Pairwise Classification from Pairwise Similarities. NIPS 2014: 262-270 - [c174]Nan Li, Rong Jin, Zhi-Hua Zhou:
Top Rank Optimization in Linear Time. NIPS 2014: 1502-1510 - [c173]Ming Lin, Rong Jin, Changshui Zhang:
Efficient Sparse Recovery via Adaptive Non-Convex Regularizers with Oracle Property. UAI 2014: 505-514 - [r1]Tianbao Yang, Rong Jin, Yun Chi, Shenghuo Zhu:
Combining Link and Content for Community Detection. Encyclopedia of Social Network Analysis and Mining 2014: 190-201 - [i35]Mehrdad Mahdavi, Rong Jin:
Excess Risk Bounds for Exponentially Concave Losses. CoRR abs/1401.4566 (2014) - [i34]Qi Qian, Rong Jin, Shenghuo Zhu, Yuanqing Lin:
An Integrated Framework for High Dimensional Distance Metric Learning and Its Application to Fine-Grained Visual Categorization. CoRR abs/1402.0453 (2014) - [i33]Mehrdad Mahdavi, Lijun Zhang, Rong Jin:
Binary Excess Risk for Smooth Convex Surrogates. CoRR abs/1402.1792 (2014) - [i32]Radha Chitta, Rong Jin, Timothy C. Havens, Anil K. Jain:
Scalable Kernel Clustering: Approximate Kernel k-means. CoRR abs/1402.3849 (2014) - [i31]Rong Jin, Shenghuo Zhu:
CUR Algorithm with Incomplete Matrix Observation. CoRR abs/1403.5647 (2014) - [i30]Tianbao Yang, Rong Jin, Shenghuo Zhu:
On Data Preconditioning for Regularized Loss Minimization. CoRR abs/1408.3115 (2014) - [i29]Nan Li, Rong Jin, Zhi-Hua Zhou:
Top Rank Optimization in Linear Time. CoRR abs/1410.1462 (2014) - [i28]Miao Xu, Rong Jin, Zhi-Hua Zhou:
CUR Algorithm for Partially Observed Matrices. CoRR abs/1411.0860 (2014) - [i27]Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu:
A Simple Homotopy Proximal Mapping for Compressive Sensing. CoRR abs/1412.1205 (2014) - 2013
- [j34]Steven C. H. Hoi, Rong Jin, Peilin Zhao, Tianbao Yang:
Online Multiple Kernel Classification. Mach. Learn. 90(2): 289-316 (2013) - [j33]Lei Wu, Rong Jin, Anil K. Jain:
Tag Completion for Image Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(3): 716-727 (2013) - [j32]Rong Jin, Tianbao Yang, Mehrdad Mahdavi, Yufeng Li, Zhi-Hua Zhou:
Improved Bounds for the Nyström Method With Application to Kernel Classification. IEEE Trans. Inf. Theory 59(10): 6939-6949 (2013) - [c172]Lijun Zhang, Mehrdad Mahdavi, Rong Jin, Tianbao Yang, Shenghuo Zhu:
Recovering the Optimal Solution by Dual Random Projection. COLT 2013: 135-157 - [c171]Mehrdad Mahdavi, Rong Jin:
Passive Learning with Target Risk. COLT 2013: 252-269 - [c170]Yue Lin, Rong Jin, Deng Cai, Shuicheng Yan, Xuelong Li:
Compressed Hashing. CVPR 2013: 446-451 - [c169]Jinfeng Yi, Rong Jin, Shaili Jain, Anil K. Jain:
Inferring Users' Preferences from Crowdsourced Pairwise Comparisons: A Matrix Completion Approach. HCOMP 2013: 207-215 - [c168]Zheyun Feng, Rong Jin, Anil K. Jain:
Large-Scale Image Annotation by Efficient and Robust Kernel Metric Learning. ICCV 2013: 1609-1616 - [c167]Lijun Zhang, Jinfeng Yi, Rong Jin, Ming Lin, Xiaofei He:
Online Kernel Learning with a Near Optimal Sparsity Bound. ICML (3) 2013: 621-629 - [c166]Wei Gao, Rong Jin, Shenghuo Zhu, Zhi-Hua Zhou:
One-Pass AUC Optimization. ICML (3) 2013: 906-914 - [c165]Lijun Zhang, Tianbao Yang, Rong Jin, Xiaofei He:
O(logT) Projections for Stochastic Optimization of Smooth and Strongly Convex Functions. ICML (3) 2013: 1121-1129 - [c164]Jinfeng Yi, Lijun Zhang, Rong Jin, Qi Qian, Anil K. Jain:
Semi-supervised Clustering by Input Pattern Assisted Pairwise Similarity Matrix Completion. ICML (3) 2013: 1400-1408 - [c163]Mehrdad Mahdavi, Lijun Zhang, Rong Jin:
Mixed Optimization for Smooth Functions. NIPS 2013: 674-682 - [c162]Lijun Zhang, Mehrdad Mahdavi, Rong Jin:
Linear Convergence with Condition Number Independent Access of Full Gradients. NIPS 2013: 980-988 - [c161]Mehrdad Mahdavi, Tianbao Yang, Rong Jin:
Stochastic Convex Optimization with Multiple Objectives. NIPS 2013: 1115-1123 - [c160]Miao Xu, Rong Jin, Zhi-Hua Zhou:
Speedup Matrix Completion with Side Information: Application to Multi-Label Learning. NIPS 2013: 2301-2309 - [i26]Rong Jin, Tianbao Yang, Mehrdad Mahdavi:
Sparse Multiple Kernel Learning with Geometric Convergence Rate. CoRR abs/1302.0315 (2013) - [i25]Mehrdad Mahdavi, Rong Jin:
Passive Learning with Target Risk. CoRR abs/1302.2157 (2013) - [i24]Lijun Zhang, Tianbao Yang, Rong Jin, Xiaofei He:
O(logT) Projections for Stochastic Optimization of Smooth and Strongly Convex Functions. CoRR abs/1304.0740 (2013) - [i23]Qi Qian, Rong Jin, Jinfeng Yi, Lijun Zhang, Shenghuo Zhu:
Efficient Distance Metric Learning by Adaptive Sampling and Mini-Batch Stochastic Gradient Descent (SGD). CoRR abs/1304.1192 (2013) - [i22]Rong Jin, Tianbao Yang, Shenghuo Zhu:
A New Analysis of Compressive Sensing by Stochastic Proximal Gradient Descent. CoRR abs/1304.4680 (2013) - [i21]Wei Gao, Rong Jin, Shenghuo Zhu, Zhi-Hua Zhou:
One-Pass AUC Optimization. CoRR abs/1305.1363 (2013) - [i20]Faraz Ahmed, Rong Jin, Alex X. Liu:
A Random Matrix Approach to Differential Privacy and Structure Preserved Social Network Graph Publishing. CoRR abs/1307.0475 (2013) - [i19]Mehrdad Mahdavi, Rong Jin:
MixedGrad: An O(1/T) Convergence Rate Algorithm for Stochastic Smooth Optimization. CoRR abs/1307.7192 (2013) - [i18]Lijun Zhang, Mehrdad Mahdavi, Rong Jin:
Improving the Minimax Rate of Active Learning. CoRR abs/1311.4803 (2013) - [i17]Rong Jin:
Stochastic Optimization of Smooth Loss. CoRR abs/1312.0048 (2013) - [i16]Tianbao Yang, Shenghuo Zhu, Rong Jin, Yuanqing Lin:
On Theoretical Analysis of Distributed Stochastic Dual Coordinate Ascent. CoRR abs/1312.1031 (2013) - 2012
- [j31]Anil K. Jain, Rong Jin, Jung-Eun Lee:
Tattoo Image Matching and Retrieval. Computer 45(5): 93-96 (2012) - [j30]Jung-Eun Lee, Rong Jin, Anil K. Jain, Wei Tong:
Image Retrieval in Forensics: Tattoo Image Database Application. IEEE Multim. 19(1): 40-49 (2012) - [j29]Wei Tong, Fengjie Li, Rong Jin, Anil K. Jain:
Large-scale near-duplicate image retrieval by kernel density estimation. Int. J. Multim. Inf. Retr. 1(1): 45-58 (2012) - [j28]Wei Wu, Hang Li, Yunhua Hu, Rong Jin:
A Kernel Approach to Multi-Task Learning with Task-Specific Kernels. J. Comput. Sci. Technol. 27(6): 1289-1301 (2012) - [j27]Mehrdad Mahdavi, Rong Jin, Tianbao Yang:
Trading regret for efficiency: online convex optimization with long term constraints. J. Mach. Learn. Res. 13: 2503-2528 (2012) - [j26]Steven C. H. Hoi, Rong Jin, Jinhui Tang, Zhi-Hua Zhou:
Introduction to the Special Section on Distance Metric Learning in Intelligent Systems. ACM Trans. Intell. Syst. Technol. 3(3): 52:1-52:2 (2012) - [j25]Lei Wu, Steven C. H. Hoi, Rong Jin, Jianke Zhu, Nenghai Yu:
Learning Bregman Distance Functions for Semi-Supervised Clustering. IEEE Trans. Knowl. Data Eng. 24(3): 478-491 (2012) - [c159]Yue Lin, Rong Jin, Deng Cai, Xiaofei He:
Random Projection with Filtering for Nearly Duplicate Search. AAAI 2012: 641-647 - [c158]Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Jinfeng Yi, Steven C. H. Hoi:
Online Kernel Selection: Algorithms and Evaluations. AAAI 2012: 1197-1203 - [c157]Lijun Zhang, Rong Jin, Chun Chen, Jiajun Bu, Xiaofei He:
Efficient Online Learning for Large-Scale Sparse Kernel Logistic Regression. AAAI 2012: 1219-1225 - [c156]Haitao Li, Xiaoyi Mu, Zhe Wang, Xiaowen Liu, Min Guo, Rong Jin, Xiangqun Zeng, Andrew J. Mason:
Wearable autonomous microsystem with electrochemical gas sensor array for real-time health and safety monitoring. EMBC 2012: 503-506 - [c155]Jinfeng Yi, Rong Jin, Anil K. Jain, Shaili Jain:
Crowdclustering with Sparse Pairwise Labels: A Matrix Completion Approach. HCOMP@AAAI 2012 - [c154]Radha Chitta, Rong Jin, Anil K. Jain:
Efficient Kernel Clustering Using Random Fourier Features. ICDM 2012: 161-170 - [c153]Jinfeng Yi, Tianbao Yang, Rong Jin, Anil K. Jain, Mehrdad Mahdavi:
Robust Ensemble Clustering by Matrix Completion. ICDM 2012: 1176-1181 - [c152]Steven C. H. Hoi, Jialei Wang, Peilin Zhao, Rong Jin, Pengcheng Wu:
Fast Bounded Online Gradient Descent Algorithms for Scalable Kernel-Based Online Learning. ICML 2012 - [c151]Ming Ji, Tianbao Yang, Binbin Lin, Rong Jin, Jiawei Han:
A Simple Algorithm for Semi-supervised Learning with Improved Generalization Error Bound. ICML 2012 - [c150]Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Lijun Zhang, Yang Zhou:
Multiple Kernel Learning from Noisy Labels by Stochastic Programming. ICML 2012 - [c149]Steven C. H. Hoi, Jialei Wang, Peilin Zhao, Rong Jin:
Online feature selection for mining big data. BigMine 2012: 93-100 - [c148]Tianbao Yang, Yufeng Li, Mehrdad Mahdavi, Rong Jin, Zhi-Hua Zhou:
Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison. NIPS 2012: 485-493 - [c147]Mehrdad Mahdavi, Tianbao Yang, Rong Jin, Shenghuo Zhu, Jinfeng Yi:
Stochastic Gradient Descent with Only One Projection. NIPS 2012: 503-511 - [c146]Jinfeng Yi, Rong Jin, Anil K. Jain, Shaili Jain, Tianbao Yang:
Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning. NIPS 2012: 1781-1789 - [c145]Hao Xia, Pengcheng Wu, Steven C. H. Hoi, Rong Jin:
Boosting multi-kernel locality-sensitive hashing for scalable image retrieval. SIGIR 2012: 55-64 - [c144]Tianbao Yang, Rong Jin, Anil K. Jain:
Learning kernel combination from noisy pairwise constraints. SSP 2012: 752-755 - [c143]Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, Shenghuo Zhu:
Online Optimization with Gradual Variations. COLT 2012: 6.1-6.20 - [i15]Tianbao Yang, Rong Jin, Mehrdad Mahdavi, Shenghuo Zhu:
An Efficient Primal-Dual Prox Method for Non-Smooth Optimization. CoRR abs/1201.5283 (2012) - [i14]Kaizhu Huang, Rong Jin, Zenglin Xu, Cheng-Lin Liu:
Robust Metric Learning by Smooth Optimization. CoRR abs/1203.3461 (2012) - [i13]Mehrdad Mahdavi, Tianbao Yang, Rong Jin:
Efficient Constrained Regret Minimization. CoRR abs/1205.2265 (2012) - [i12]Tianbao Yang, Rong Jin, Yun Chi, Shenghuo Zhu:
A Bayesian Framework for Community Detection Integrating Content and Link. CoRR abs/1205.2603 (2012) - [i11]Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Lijun Zhang, Yang Zhou:
Multiple Kernel Learning from Noisy Labels by Stochastic Programming. CoRR abs/1206.4629 (2012) - [i10]Peilin Zhao, Jialei Wang, Pengcheng Wu, Rong Jin, Steven C. H. Hoi:
Fast Bounded Online Gradient Descent Algorithms for Scalable Kernel-Based Online Learning. CoRR abs/1206.4633 (2012) - [i9]Liu Yang, Rong Jin, Rahul Sukthankar:
Bayesian Active Distance Metric Learning. CoRR abs/1206.5283 (2012) - [i8]Rong Jin, Luo Si:
A Bayesian Approach toward Active Learning for Collaborative Filtering. CoRR abs/1207.4146 (2012) - [i7]Mehrdad Mahdavi, Tianbao Yang, Rong Jin:
An Improved Bound for the Nystrom Method for Large Eigengap. CoRR abs/1209.0001 (2012) - [i6]Lijun Zhang, Mehrdad Mahdavi, Rong Jin, Tianbao Yang:
Recovering Optimal Solution by Dual Random Projection. CoRR abs/1211.3046 (2012) - [i5]Mehrdad Mahdavi, Tianbao Yang, Rong Jin:
Online Stochastic Optimization with Multiple Objectives. CoRR abs/1211.6013 (2012) - [i4]Rong Jin, Luo Si, ChengXiang Zhai:
Preference-based Graphic Models for Collaborative Filtering. CoRR abs/1212.2478 (2012) - 2011
- [j24]Peilin Zhao, Steven C. H. Hoi, Rong Jin:
Double Updating Online Learning. J. Mach. Learn. Res. 12: 1587-1615 (2011) - [j23]Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, Rong Jin:
Detecting communities and their evolutions in dynamic social networks - a Bayesian approach. Mach. Learn. 82(2): 157-189 (2011) - [j22]Steven C. H. Hoi, Rong Jin:
Active multiple kernel learning for interactive 3D object retrieval systems. ACM Trans. Interact. Intell. Syst. 1(1): 3:1-3:27 (2011) - [j21]Lei Wu, Steven C. H. Hoi, Rong Jin, Jianke Zhu, Nenghai Yu:
Distance metric learning from uncertain side information for automated photo tagging. ACM Trans. Intell. Syst. Technol. 2(2): 13:1-13:28 (2011) - [c142]Wei Wu, Hang Li, Yunhua Hu, Rong Jin:
Multi-Task Learning in Square Integrable Space. AAAI 2011: 537-542 - [c141]Subhabrata Bhattacharya, Rahul Sukthankar, Rong Jin, Mubarak Shah:
A probabilistic representation for efficient large scale visual recognition tasks. CVPR 2011: 2593-2600 - [c140]Serhat Selcuk Bucak, Rong Jin, Anil K. Jain:
Multi-label learning with incomplete class assignments. CVPR 2011: 2801-2808 - [c139]Timothy C. Havens, Radha Chitta, Anil K. Jain, Rong Jin:
Speedup of fuzzy and possibilistic kernel c-means for large-scale clustering. FUZZ-IEEE 2011: 463-470 - [c138]Peilin Zhao, Steven C. H. Hoi, Rong Jin, Tianbao Yang:
Online AUC Maximization. ICML 2011: 233-240 - [c137]Hamed Valizadegan, Rong Jin, Shijun Wang:
Learning to trade off between exploration and exploitation in multiclass bandit prediction. KDD 2011: 204-212 - [c136]Radha Chitta, Rong Jin, Timothy C. Havens, Anil K. Jain:
Approximate kernel k-means: solution to large scale kernel clustering. KDD 2011: 895-903 - [c135]Wei Tong, Fengjie Li, Tianbao Yang, Rong Jin, Anil K. Jain:
A kernel density based approach for large scale image retrieval. ICMR 2011: 28 - [c134]Luo Si, Rong Jin:
Machine learning for information retrieval. SIGIR 2011: 1293-1294 - [e3]Steven C. H. Hoi, Jiebo Luo, Susanne Boll, Dong Xu, Rong Jin:
Social Media Modeling and Computing. Springer 2011, ISBN 978-0-85729-435-7 [contents] - [i3]Rong Jin, Tianbao Yang, Mehrdad Mahdavi:
Improved Bound for the Nystrom's Method and its Application to Kernel Classification. CoRR abs/1111.2262 (2011) - [i2]Mehrdad Mahdavi, Rong Jin, Tianbao Yang:
Trading Regret for Efficiency: Online Convex Optimization with Long Term Constraints. CoRR abs/1111.6082 (2011) - [i1]Tianbao Yang, Rong Jin, Mehrdad Mahdavi:
Regret Bound by Variation for Online Convex Optimization. CoRR abs/1111.6337 (2011) - 2010
- [j20]Yin Zhang, Rong Jin, Zhi-Hua Zhou:
Understanding bag-of-words model: a statistical framework. Int. J. Mach. Learn. Cybern. 1(1-4): 43-52 (2010) - [j19]Seif Eldawlatly, Yang Zhou, Rong Jin, Karim G. Oweiss:
On the Use of Dynamic Bayesian Networks in Reconstructing Functional Neuronal Networks from Spike Train Ensembles. Neural Comput. 22(1): 158-189 (2010) - [j18]Liu Yang, Rong Jin, Lily B. Mummert, Rahul Sukthankar, Adam Goode, Bin Zheng, Steven C. H. Hoi, Mahadev Satyanarayanan:
A Boosting Framework for Visuality-Preserving Distance Metric Learning and Its Application to Medical Image Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 32(1): 30-44 (2010) - [j17]Haibin Cheng, Pang-Ning Tan, Rong Jin:
Efficient Algorithm for Localized Support Vector Machine. IEEE Trans. Knowl. Data Eng. 22(4): 537-549 (2010) - [j16]Zenglin Xu, Irwin King, Michael R. Lyu, Rong Jin:
Discriminative semi-supervised feature selection via manifold regularization. IEEE Trans. Neural Networks 21(7): 1033-1047 (2010) - [c133]Zenglin Xu, Rong Jin, Shenghuo Zhu, Michael R. Lyu, Irwin King:
Smooth Optimization for Effective Multiple Kernel Learning. AAAI 2010: 637-642 - [c132]Rong Jin, Steven C. H. Hoi, Tianbao Yang:
Online Multiple Kernel Learning: Algorithms and Mistake Bounds. ALT 2010: 390-404 - [c131]Pavan Kumar Mallapragada, Rong Jin, Anil K. Jain:
Online visual vocabulary pruning using pairwise constraints. CVPR 2010: 3073-3080 - [c130]Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, Michael R. Lyu:
Simple and Efficient Multiple Kernel Learning by Group Lasso. ICML 2010: 1175-1182 - [c129]Tianbao Yang, Rong Jin, Anil K. Jain:
Learning from Noisy Side Information by Generalized Maximum Entropy Model. ICML 2010: 1199-1206 - [c128]Jung-Eun Lee, Rong Jin, Anil K. Jain:
Unsupervised Ensemble Ranking: Application to Large-Scale Image Retrieval. ICPR 2010: 3902-3906 - [c127]Wei Li, Xuerui Wang, Ruofei Zhang, Ying Cui, Jianchang Mao, Rong Jin:
Exploitation and exploration in a performance based contextual advertising system. KDD 2010: 27-36 - [c126]Tianbao Yang, Rong Jin, Anil K. Jain, Yang Zhou, Wei Tong:
Unsupervised transfer classification: application to text categorization. KDD 2010: 1159-1168 - [c125]Serhat Selcuk Bucak, Rong Jin, Anil K. Jain:
Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition. NIPS 2010: 325-333 - [c124]Sheng-Jun Huang, Rong Jin, Zhi-Hua Zhou:
Active Learning by Querying Informative and Representative Examples. NIPS 2010: 892-900 - [c123]Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, Rong Jin:
Directed Network Community Detection: A Popularity and Productivity Link Model. SDM 2010: 742-753 - [c122]Pavan Kumar Mallapragada, Rong Jin, Anil K. Jain:
Non-parametric Mixture Models for Clustering. SSPR/SPR 2010: 334-343 - [c121]Kaizhu Huang, Rong Jin, Zenglin Xu, Cheng-Lin Liu:
Robust Metric Learning by Smooth Optimization. UAI 2010: 244-251 - [c120]Shijun Wang, Rong Jin, Hamed Valizadegan:
A Potential-based Framework for Online Multi-class Learning with Partial Feedback. AISTATS 2010: 900-907 - [c119]Yang Zhou, Rong Jin, Steven C. H. Hoi:
Exclusive Lasso for Multi-task Feature Selection. AISTATS 2010: 988-995 - [e2]Susanne Boll, Steven C. H. Hoi, Jiebo Luo, Roelof van Zwol, Rong Jin, Irwin King, Yiannis Kompatsiaris, Dong Xu:
Proceedings of second ACM SIGMM workshop on Social media, WSM@MM 2010, Firenze, Italy, October 25, 2010. ACM 2010, ISBN 978-1-4503-0173-2 [contents]
2000 – 2009
- 2009
- [j15]Xuerui Yang, Yang Zhou, Rong Jin, Christina Chan:
Reconstruct modular phenotype-specific gene networks by knowledge-driven matrix factorization. Bioinform. 25(17): 2236-2243 (2009) - [j14]Seif Eldawlatly, Rong Jin, Karim G. Oweiss:
Identifying Functional Connectivity in Large-Scale Neural Ensemble Recordings: A Multiscale Data Mining Approach. Neural Comput. 21(2): 450-477 (2009) - [j13]Pavan Kumar Mallapragada, Rong Jin, Anil K. Jain, Yi Liu:
SemiBoost: Boosting for Semi-Supervised Learning. IEEE Trans. Pattern Anal. Mach. Intell. 31(11): 2000-2014 (2009) - [j12]Steven C. H. Hoi, Rong Jin, Michael R. Lyu:
Batch Mode Active Learning with Applications to Text Categorization and Image Retrieval. IEEE Trans. Knowl. Data Eng. 21(9): 1233-1248 (2009) - [j11]Steven C. H. Hoi, Rong Jin, Jianke Zhu, Michael R. Lyu:
Semisupervised SVM batch mode active learning with applications to image retrieval. ACM Trans. Inf. Syst. 27(3): 16:1-16:29 (2009) - [c118]Rong Jin, Shijun Wang, Zhi-Hua Zhou:
Learning a distance metric from multi-instance multi-label data. CVPR 2009: 896-902 - [c117]Seif Eldawlatly, Yang Zhou, Rong Jin, Karim G. Oweiss:
Inferring functional cortical networks from spike train ensembles using Dynamic Bayesian Networks. ICASSP 2009: 3489-3492 - [c116]Serhat Selcuk Bucak, Pavan Kumar Mallapragada, Rong Jin, Anil K. Jain:
Efficient multi-label ranking for multi-class learning: Application to object recognition. ICCV 2009: 2098-2105 - [c115]Anil K. Jain, Jung-Eun Lee, Rong Jin, Nicholas Gregg:
Content-based image retrieval: An application to tattoo images. ICIP 2009: 2745-2748 - [c114]Zenglin Xu, Rong Jin, Jieping Ye, Michael R. Lyu, Irwin King:
Non-monotonic feature selection. ICML 2009: 1145-1152 - [c113]Liu Yang, Rong Jin, Jieping Ye:
Online learning by ellipsoid method. ICML 2009: 1153-1160 - [c112]Zenglin Xu, Rong Jin, Michael R. Lyu, Irwin King:
Discriminative Semi-Supervised Feature Selection via Manifold Regularization. IJCAI 2009: 1303-1308 - [c111]Tianbao Yang, Rong Jin, Yun Chi, Shenghuo Zhu:
Combining link and content for community detection: a discriminative approach. KDD 2009: 927-936 - [c110]Anil K. Jain, Jung-Eun Lee, Rong Jin:
Graffiti-ID: matching and retrieval of graffiti images. MiFor@MM 2009: 1-6 - [c109]Fengjie Li, Wei Tong, Rong Jin, Anil K. Jain, Jung-Eun Lee:
An efficient key point quantization algorithm for large scale image retrieval. LS-MMRM@ACM Multimedia 2009: 89-96 - [c108]Lei Wu, Steven C. H. Hoi, Rong Jin, Jianke Zhu, Nenghai Yu:
Distance metric learning from uncertain side information with application to automated photo tagging. ACM Multimedia 2009: 135-144 - [c107]Susanne Boll, Steven C. H. Hoi, Jiebo Luo, Rong Jin, Irwin King, Dong Xu:
First ACM SIGMM international workshop onsocial media (WSM'09). ACM Multimedia 2009: 1161-1162 - [c106]Rong Jin, Shijun Wang, Yang Zhou:
Regularized Distance Metric Learning: Theory and Algorithm. NIPS 2009: 862-870 - [c105]Hamed Valizadegan, Rong Jin, Ruofei Zhang, Jianchang Mao:
Learning to Rank by Optimizing NDCG Measure. NIPS 2009: 1883-1891 - [c104]Lei Wu, Rong Jin, Steven C. H. Hoi, Jianke Zhu, Nenghai Yu:
Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering. NIPS 2009: 2089-2097 - [c103]Zenglin Xu, Rong Jin, Jianke Zhu, Irwin King, Michael R. Lyu, Zhirong Yang:
Adaptive Regularization for Transductive Support Vector Machine. NIPS 2009: 2125-2133 - [c102]Peilin Zhao, Steven C. H. Hoi, Rong Jin:
DUOL: A Double Updating Approach for Online Learning. NIPS 2009: 2259-2267 - [c101]Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, Rong Jin:
A Bayesian Approach Toward Finding Communities and Their Evolutions in Dynamic Social Networks. SDM 2009: 990-1001 - [c100]Tianbao Yang, Rong Jin, Yun Chi, Shenghuo Zhu:
A Bayesian Framework for Community Detection Integrating Content and Link. UAI 2009: 615-622 - [c99]Shijun Wang, Rong Jin:
An Information Geometry Approach for Distance Metric Learning. AISTATS 2009: 591-598 - [e1]Susanne Boll, Steven C. H. Hoi, Jiebo Luo, Rong Jin, Irwin King, Dong Xu:
Proceedings of the first SIGMM workshop on Social media, WSM@MM 2009, Beijing, China, October 23, 2009. ACM 2009, ISBN 978-1-60558-759-2 [contents] - 2008
- [j10]Shuiwang Ji, Liang Sun, Rong Jin, Sudhir Kumar, Jieping Ye:
Automated annotation of Drosophila gene expression patterns using a controlled vocabulary. Bioinform. 24(17): 1881-1888 (2008) - [j9]Rong Jin, Luo Si, Christina Chan:
A Bayesian framework for knowledge driven regression model in micro-array data analysis. Int. J. Data Min. Bioinform. 2(3): 250-267 (2008) - [c98]Steven C. H. Hoi, Rong Jin:
Semi-Supervised Ensemble Ranking. AAAI 2008: 634-639 - [c97]Yang Zhou, Zheng Li, Xuerui Yang, Linxia Zhang, Shireesh Srivastava, Rong Jin, Christina Chan:
Using Knowledge Driven Matrix Factorization to Reconstruct Modular Gene Regulatory Network. AAAI 2008: 811-816 - [c96]Jinfeng Zhuang, Steven C. H. Hoi, Aixin Sun, Rong Jin:
Representative entry selection for profiling blogs. CIKM 2008: 1387-1388 - [c95]Zenglin Xu, Rong Jin, Kaizhu Huang, Michael R. Lyu, Irwin King:
Semi-supervised text categorization by active search. CIKM 2008: 1517-1518 - [c94]Steven C. H. Hoi, Rong Jin, Jianke Zhu, Michael R. Lyu:
Semi-supervised SVM batch mode active learning for image retrieval. CVPR 2008 - [c93]Jung-Eun Lee, Rong Jin, Anil K. Jain:
Rank-based distance metric learning: An application to image retrieval. CVPR 2008 - [c92]Liu Yang, Rong Jin, Rahul Sukthankar, Frédéric Jurie:
Unifying discriminative visual codebook generation with classifier training for object category recognition. CVPR 2008 - [c91]Steven C. H. Hoi, Rong Jin:
Active kernel learning. ICML 2008: 400-407 - [c90]Pavan Kumar Mallapragada, Rong Jin, Anil K. Jain:
Active query selection for semi-supervised clustering. ICPR 2008: 1-4 - [c89]Shuiwang Ji, Liang Sun, Rong Jin, Jieping Ye:
Multi-label Multiple Kernel Learning. NIPS 2008: 777-784 - [c88]Zenglin Xu, Rong Jin, Irwin King, Michael R. Lyu:
An Extended Level Method for Efficient Multiple Kernel Learning. NIPS 2008: 1825-1832 - [c87]Liu Yang, Rong Jin, Rahul Sukthankar:
Semi-supervised Learning with Weakly-Related Unlabeled Data: Towards Better Text Categorization. NIPS 2008: 1857-1864 - [c86]Hamed Valizadegan, Rong Jin, Anil K. Jain:
Semi-Supervised Boosting for Multi-Class Classification. ECML/PKDD (2) 2008: 522-537 - [c85]Rong Jin, Hamed Valizadegan, Hang Li:
Ranking refinement and its application to information retrieval. WWW 2008: 397-406 - 2007
- [j8]Karim G. Oweiss, Rong Jin, Yasir Suhail:
Identifying neuronal assemblies with local and global connectivity with scale space spectral clustering. Neurocomputing 70(10-12): 1728-1734 (2007) - [j7]Rong Jin, Jian Zhang:
Multi-Class Learning by Smoothed Boosting. Mach. Learn. 67(3): 207-227 (2007) - [j6]Joyce Y. Chai, Chen Zhang, Rong Jin:
An empirical investigation of user term feedback in text-based targeted image search. ACM Trans. Inf. Syst. 25(1): 3 (2007) - [c84]Feilong Chen, Rong Jin:
Active Algorithm Selection. AAAI 2007: 534-539 - [c83]Wei Tong, Rong Jin:
Semi-Supervised Learning by Mixed Label Propagation. AAAI 2007: 651-656 - [c82]Yi Liu, Joyce Yue Chai, Rong Jin:
Automated Vocabulary Acquisition and Interpretation in Multimodal Conversational Systems. ACL 2007 - [c81]Liu Yang, Rong Jin, Caroline Pantofaru, Rahul Sukthankar:
Discriminative Cluster Refinement: Improving Object Category Recognition Given Limited Training Data. CVPR 2007 - [c80]Rong Jin, Ming Wu, Rahul Sukthankar:
Semi-supervised Collaborative Text Classification. ECML 2007: 600-607 - [c79]Steven C. H. Hoi, Rong Jin, Michael R. Lyu:
Learning nonparametric kernel matrices from pairwise constraints. ICML 2007: 361-368 - [c78]Chris H. Q. Ding, Rong Jin, Tao Li, Horst D. Simon:
A learning framework using Green's function and kernel regularization with application to recommender system. KDD 2007: 260-269 - [c77]Yi Liu, Rong Jin, Anil K. Jain:
BoostCluster: boosting clustering by pairwise constraints. KDD 2007: 450-459 - [c76]Liu Yang, Rong Jin, Rahul Sukthankar, Bin Zheng, Lily B. Mummert, Mahadev Satyanarayanan, Mei Chen, Drazen Jukic:
Learning distance metrics for interactive search-assisted diagnosis of mammograms. Computer-Aided Diagnosis 2007: 65141H - [c75]Zenglin Xu, Rong Jin, Jianke Zhu, Irwin King, Michael R. Lyu:
Efficient Convex Relaxation for Transductive Support Vector Machine. NIPS 2007: 1641-1648 - [c74]Anil K. Jain, Jung-Eun Lee, Rong Jin:
Tattoo-ID: Automatic Tattoo Image Retrieval for Suspect and Victim Identification. PCM 2007: 256-265 - [c73]Feng Kang, Rong Jin, Steven C. H. Hoi:
Similarity Beyond Distance Measurement. RIAO 2007: 449-460 - [c72]Haibin Cheng, Pang-Ning Tan, Rong Jin:
Localized Support Vector Machine and Its Efficient Algorithm. SDM 2007: 461-466 - [c71]Chen Zhang, Matthew Gerber, Tyler Baldwin, Steve Emelander, Joyce Yue Chai, Rong Jin:
Michigan State University at the 2007 TREC ciQA Task. TREC 2007 - [c70]Liu Yang, Rong Jin, Rahul Sukthankar:
Bayesian Active Distance Metric Learning. UAI 2007: 442-449 - 2006
- [j5]Rong Jin, Luo Si, Chengxiang Zhai:
A study of mixture models for collaborative filtering. Inf. Retr. 9(3): 357-382 (2006) - [j4]Luo Si, Rong Jin, Steven C. H. Hoi, Michael R. Lyu:
Collaborative image retrieval via regularized metric learning. Multim. Syst. 12(1): 34-44 (2006) - [j3]Yi Liu, Rong Jin, Joyce Y. Chai:
A statistical framework for query translation disambiguation. ACM Trans. Asian Lang. Inf. Process. 5(4): 360-387 (2006) - [j2]Steven C. H. Hoi, Michael R. Lyu, Rong Jin:
A Unified Log-Based Relevance Feedback Scheme for Image Retrieval. IEEE Trans. Knowl. Data Eng. 18(4): 509-524 (2006) - [c69]Yi Liu, Rong Jin, Liu Yang:
Semi-supervised Multi-label Learning by Constrained Non-negative Matrix Factorization. AAAI 2006: 421-426 - [c68]Liu Yang, Rong Jin, Rahul Sukthankar, Yi Liu:
An Efficient Algorithm for Local Distance Metric Learning. AAAI 2006: 543-548 - [c67]Feng Kang, Rong Jin, Rahul Sukthankar:
Correlated Label Propagation with Application to Multi-label Learning. CVPR (2) 2006: 1719-1726 - [c66]Karim G. Oweiss, Rong Jin, Feilong Chen:
Assessing temporal and spatial evolution of clusters of functionally interdependent neurons using graph partitioning techniques. EMBC 2006: 1601-1604 - [c65]Rong Jin, Luo Si, Shireesh Srivastava, Zheng Li, Christina Chan:
A Knowledge Driven Regression Model for Gene Expression and Microarray Analysis. EMBC 2006: 5326-5329 - [c64]Rong Jin, Yasir Suhail, Karim G. Oweiss:
A Mixture Model for Spike Train Ensemble Analysis Using Spectral Clustering. ICASSP (5) 2006: 885-888 - [c63]Steven C. H. Hoi, Rong Jin, Jianke Zhu, Michael R. Lyu:
Batch mode active learning and its application to medical image classification. ICML 2006: 417-424 - [c62]Hamed Valizadegan, Rong Jin:
Generalized Maximum Margin Clustering and Unsupervised Kernel Learning. NIPS 2006: 1417-1424 - [c61]Ming Wu, Rong Jin:
A graph-based framework for relation propagation and its application to multi-label learning. SIGIR 2006: 717-718 - [c60]Steven C. H. Hoi, Rong Jin, Michael R. Lyu:
Large-scale text categorization by batch mode active learning. WWW 2006: 633-642 - 2005
- [c59]Yi Liu, Rong Jin:
Query Translation Disambiguation as Graph Partitioning. AAAI 2005: 1424-1429 - [c58]Chen Wang, Xiao Li, Rong Jin:
Sensor Localization in an Obstructed Environment. DCOSS 2005: 49-62 - [c57]Steven C. H. Hoi, Michael R. Lyu, Rong Jin:
Integrating User Feedback Log into Relevance Feedback by Coupled SVM for Content-Based Image Retrieval. ICDE Workshops 2005: 1177 - [c56]Rong Jin, Joyce Y. Chai, Luo Si:
Learn to weight terms in information retrieval using category information. ICML 2005: 353-360 - [c55]Rong Jin, Jian Zhang:
A smoothed boosting algorithm using probabilistic output codes. ICML 2005: 361-368 - [c54]Rong Jin, Huan Liu:
Learning with Labeled Sessions. IJCAI 2005: 740-745 - [c53]Rong Jin, Huan Liu:
A Novel Approach to Model Generation for Heterogeneous Data Classification. IJCAI 2005: 746-751 - [c52]Joyce Y. Chai, Zahar Prasov, Joseph Blaim, Rong Jin:
Linguistic theories in efficient multimodal reference resolution: an empirical investigation. IUI 2005: 43-50 - [c51]Rong Jin, Chris H. Q. Ding, Feng Kang:
A Probabilistic Approach for Optimizing Spectral Clustering. NIPS 2005: 571-578 - [c50]Rong Jin, Yi Liu:
A Framework for Incorporating Class Priors into Discriminative Classification. PAKDD 2005: 568-577 - [c49]Luo Si, Rong Jin:
Adjusting Mixture Weights of Gaussian Mixture Model via Regularized Probabilistic Latent Semantic Analysis. PAKDD 2005: 622-631 - [c48]Feng Kang, Rong Jin:
Symmetric Statistical Translation Models for Automatic Image Annotation. SDM 2005: 616-620 - [c47]Chen Zhang, Joyce Y. Chai, Rong Jin:
User term feedback in interactive text-based image retrieval. SIGIR 2005: 51-58 - [c46]Yi Liu, Rong Jin, Joyce Y. Chai:
A maximum coherence model for dictionary-based cross-language information retrieval. SIGIR 2005: 536-543 - [c45]Rong Jin, Joyce Y. Chai:
Study of cross lingual information retrieval using on-line translation systems. SIGIR 2005: 619-620 - 2004
- [c44]Luo Si, Rong Jin:
Unified filtering by combining collaborative filtering and content-based filtering via mixture model and exponential model. CIKM 2004: 156-157 - [c43]Feng Kang, Rong Jin, Joyce Y. Chai:
Regularizing translation models for better automatic image annotation. CIKM 2004: 350-359 - [c42]Vineet Bansal, Chen Zhang, Joyce Y. Chai, Rong Jin:
MSU at ImageCLEF: Cross Language and Interactive Image Retrieval. CLEF 2004: 805-815 - [c41]Rong Jin, Huan Liu:
SWITCH: A Novel Approach to Ensemble Learning for Heterogeneous Data. ECML 2004: 560-562 - [c40]Rong Jin, Huan Liu:
Robust feature induction for support vector machines. ICML 2004 - [c39]Pang-Ning Tan, Rong Jin:
Ordering patterns by combining opinions from multiple sources. KDD 2004: 695-700 - [c38]Rong Jin, Joyce Y. Chai, Luo Si:
Effective automatic image annotation via a coherent language model and active learning. ACM Multimedia 2004: 892-899 - [c37]Rong Jin, Joyce Y. Chai, Luo Si:
An automatic weighting scheme for collaborative filtering. SIGIR 2004: 337-344 - [c36]Rong Jin, Luo Si:
A study of methods for normalizing user ratings in collaborative filtering. SIGIR 2004: 568-569 - [c35]Rong Jin, Luo Si:
A Bayesian Approach toward Active Learning for Collaborative Filtering. UAI 2004: 278-285 - 2003
- [j1]Rong Jin:
Statistical approaches toward automatic title generation. SIGIR Forum 37(2): 79 (2003) - [c34]Rong Jin, Luo Si, ChengXiang Zhai, James P. Callan:
Collaborative filtering with decoupled models for preferences and ratings. CIKM 2003: 309-316 - [c33]Rong Yan, Alexander G. Hauptmann, Rong Jin:
Multimedia Search with Pseudo-relevance Feedback. CIVR 2003: 238-247 - [c32]Rong Jin, ChengXiang Zhai, Alexander G. Hauptmann:
Information retrieval for OCR documents: a content-based probabilistic correction model. DRR 2003: 128-135 - [c31]Yan Liu, Jaime G. Carbonell, Rong Jin:
A New Pairwise Ensemble Approach for Text Classification. ECML 2003: 277-288 - [c30]Rong Yan, Yan Liu, Rong Jin, Alexander G. Hauptmann:
On predicting rare classes with SVM ensembles in scene classification. ICASSP (3) 2003: 21-24 - [c29]Rong Jin, Alexander G. Hauptmann:
Learning to identify video shots with people based on face detection. ICME 2003: 293-296 - [c28]Rong Jin, Rong Yan, Jian Zhang, Alexander G. Hauptmann:
A Faster Iterative Scaling Algorithm for Conditional Exponential Model. ICML 2003: 282-289 - [c27]Luo Si, Rong Jin:
Flexible Mixture Model for Collaborative Filtering. ICML 2003: 704-711 - [c26]Jian Zhang, Rong Jin, Yiming Yang, Alexander G. Hauptmann:
Modified Logistic Regression: An Approximation to SVM and Its Applications in Large-Scale Text Categorization. ICML 2003: 888-895 - [c25]Rong Yan, Alexander G. Hauptmann, Rong Jin:
Negative pseudo-relevance feedback in content-based video retrieval. ACM Multimedia 2003: 343-346 - [c24]Alexander G. Hauptmann, Rong Jin, Tobun Dorbin Ng:
Video retrieval using speech and image information. Storage and Retrieval for Media Databases 2003: 148-159 - [c23]Alexander G. Hauptmann, Robert V. Baron, Ming-Yu Chen, Michael G. Christel, Pinar Duygulu, C. Huang, Rong Jin, Wei-Hao Lin, Tobun D. Ng, Neema Moraveji, Norman Papernick, Cees G. M. Snoek, G. Tzanetakis, Jie Yang, Rong Yan, Howard D. Wactlar:
Informedia at TRECVID 2003 : Analyzing and Searching Broadcast News Video. TRECVID 2003 - [c22]Rong Jin, Luo Si, ChengXiang Zhai:
Preference-based Graphic Models for Collaborative Filtering. UAI 2003: 329-336 - [c21]Wei-Hao Lin, Rong Jin, Alexander G. Hauptmann:
Web Image Retrieval Re-Ranking with Relevance Model. Web Intelligence 2003: 242-248 - 2002
- [c20]Luo Si, Rong Jin, James P. Callan, Paul Ogilvie:
A language modeling framework for resource selection and results merging. CIKM 2002: 391-397 - [c19]Rong Jin, Alexander G. Hauptmann:
A New Probabilistic Model for Title Generation. COLING 2002 - [c18]Rong Jin, Alexander G. Hauptmann:
Using a probabilistic source model for comparing images. ICIP (3) 2002: 941-944 - [c17]Rong Jin, Yanjun Qi, Alexander G. Hauptmann:
A Probabilistic Model for Camera Zoom Detection. ICPR (3) 2002: 859-862 - [c16]Alexander G. Hauptmann, Rong Jin, Tobun D. Ng:
Multi-modal information retrieval from broadcast video using OCR and speech recognition. JCDL 2002: 160-161 - [c15]Rong Jin, Zoubin Ghahramani:
Learning with Multiple Labels. NIPS 2002: 897-904 - [c14]Wei-Hao Lin, Rong Jin, Alexander G. Hauptmann:
Meta-Classification of Multimedia Classifiers. KDMCD 2002: 21-27 - [c13]Rong Jin, Alexander G. Hauptmann, ChengXiang Zhai:
Title language model for information retrieval. SIGIR 2002: 42-48 - [c12]Rong Jin, Luo Si, Alexander G. Hauptmann, James P. Callan:
Language model for IR using collection information. SIGIR 2002: 419-420 - [c11]Alexander G. Hauptmann, Rong Yan, Yanjun Qi, Rong Jin, Michael G. Christel, Mark Derthick, Ming-Yu Chen, Robert V. Baron, Wei-Hao Lin, Tobun D. Ng:
Video Classification and Retrieval with the Informedia Digital Video Library System. TREC 2002 - 2001
- [c10]Rong Jin, Alexander G. Hauptmann:
Title Generation Using a Training Corpus. CICLing 2001: 208-215 - [c9]Rong Jin, Alexander G. Hauptmann:
Learning to Select Good Title Words: An New Approach based on Reverse Information Retrieval. ICML 2001: 242-249 - [c8]Rong Jin, Alexander G. Hauptmann:
Title Generation for Machine-Translated Documents. IJCAI 2001: 1229-1234 - [c7]Rong Jin, Alexander G. Hauptmann:
Automatic Title Generation for Spoken Broadcast News. HLT 2001 - [c6]Rong Jin, Christos Falusos, Alexander G. Hauptmann:
Meta-scoring: Automatically Evaluating Term Weighting Schemes in IR without Precision-Recall. SIGIR 2001: 83-89 - [c5]Susan T. Dumais, Rong Jin:
Probabilistic Combination of Content and Links. SIGIR 2001: 402-403 - [c4]Alexander G. Hauptmann, Rong Jin, Norman Papernick, Tobun Dorbin Ng, Yanjun Qi, Ricky Houghton, Sue Thornton:
Video Retrieval with the Informedia Digital Video Library System. TREC 2001 - 2000
- [c3]Alexander G. Hauptmann, Rong Jin, Howard D. Wactlar:
Data Analysis for a Multimedia Library. ELSNET Summer School 2000: 6-37 - [c2]Rong Jin, Alexander G. Hauptmann:
Title generation for spoken broadcast news using a training corpus. INTERSPEECH 2000: 680-683
1990 – 1999
- 1999
- [c1]Matthew Siegler, Rong Jin, Alexander G. Hauptmann:
CMU Spoken Document Retrieval in Trec-8: Analysis of the role of Term Frequency TF. TREC 1999
Coauthor Index
aka: Joyce Yue Chai
aka: Alexander G. Hauptmann
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-28 21:30 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint