dbo:abstract
|
- In differential geometry, an affine manifold is a differentiable manifold equipped with a flat, torsion-free connection. Equivalently, it is a manifold that is (if connected) covered by an open subset of , with monodromy acting by affine transformations. This equivalence is an easy corollary of Cartan–Ambrose–Hicks theorem. Equivalently, it is a manifold equipped with an atlas—called the affine structure—such that all transition functions between charts are affine transformations (that is, have constant Jacobian matrix); two atlases are equivalent if the manifold admits an atlas subjugated to both, with transitions from both atlases to a smaller atlas being affine. A manifold having a distinguished affine structure is called an affine manifold and the charts which are affinely related to those of the affine structure are called affine charts. In each affine coordinate domain the coordinate vector fields form a parallelisation of that domain, so there is an associated connection on each domain. These locally defined connections are the same on overlapping parts, so there is a unique connection associated with an affine structure. Note there is a link between linear connection (also called affine connection) and a web. (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 7321 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- In differential geometry, an affine manifold is a differentiable manifold equipped with a flat, torsion-free connection. Equivalently, it is a manifold that is (if connected) covered by an open subset of , with monodromy acting by affine transformations. This equivalence is an easy corollary of Cartan–Ambrose–Hicks theorem. (en)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |