Challenges of Pasture Feeding Systems—Opportunities and Constraints
Abstract
:1. Introduction
2. Challenges from the Environment
2.1. Carbon Sequestration
2.2. Air Protection
2.3. Environment Protection
2.4. Protection of Biodiversity
3. Impact of Grazing on Animal Productivity and the Environment
3.1. Stocking Methods
3.2. Organisational Innovations in Grazing
3.2.1. Virtual Fencing
3.2.2. Automation of Fences in Pastures
3.2.3. State-of-the-Art Applications and Programmes to Predict Pasture Yields
3.2.4. Automatic Milking System (AMS) at Pasture
Parameter | Methods of Analysis (Technology) | Use on Grasslands (Application) | References |
---|---|---|---|
Yield. Sward filling. | Clipping quadrats (Measurements of the weight of a 1 m2 sward). PEAQ sward stick (alfalfa). QMS Sward stick Plate meter (Rising plate meter, Pasture Meters, Quality Plate Meters) Ultrasonic distance Sensors. Spectral sensors in visible or near infrared light. LiDAR and UAS (Unmanned aircraft system). Mutli-View Stereopsis (MVS). | Assessing plant growth rates. Estimating various plant traits such as height, biomass, and ground cover. | [176,177,178,179,180,181,182,183,184] |
Sward composition. Sward structure. Identification of rare species in grasslands. Defoliation of sward. | Combination of RGB sensors and hyperspectral sensors. Laser scanning (LiDAR). | Assessing the nutritional value of sward. Decision support for choosing the time of harvesting the sward Identification of valuable natural habitats. Conservation of grazing areas by adjusting the length of grazing time and changing paddocks. | [185,186,187] |
Observation and control of animal behavior. | Accelerometer. Pressure sensor. Acoustic sensor. | Detection of estrus and metabolic disorders based on rumination activity. Animal activity and behavior. Selection preferences of plant species in the sward. Frequency of forage intake. Calculation of forage intake per day. Detecting metabolic and digestive disorders from rumination activity. | [188,189,190,191] |
Movement patterns | GPS logger. Pedometer | Individual movement patterns of animals. Movement activity per day. Movement activity of a group of animals or herd. Length of animal grazing and degree of use of pasture area. | |
Movement on pastures | Automatic opening of gates on paddocks | Control access of grazing animals to paddocks. Preprogrammed times for opening of paddocks. Remote control of gates | [169] |
Grazing behavior | Virtual fencing | Dynamic control and adjustment of animal grazing. Allocation of new grazing areas by shifting virtual boundaries in GPS. Control of pasture boundaries by active neck collars on the animals. Tracking of animals by GPS positioning system. SMS notification of animal escapes. | [160,192,193] |
Decision support in sward use. Sward management. | Data-based online tool. | Assessment of sward growth rates. Measurements of pasture productivity. Analyses of fertilization and soil richness. Increasing animal feed intake. Assessment of sward quality in the pasture. Improving milk yields and daily animal increases. | [194] |
3.3. Innovations to Improve Feed Quality
3.3.1. Temporary Pastures
3.3.2. Multi-Species Pastures MSP
4. Impact of Grazing on Animal Welfare
5. Grazing in Response to Consumer Expectations about Product Quality
5.1. Lipid Fraction
5.2. Milk Proteins
5.3. Vitamins and Minerals
6. The Yield Assessment Systems and Grazing Techniques
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- De Haan, C.; Steinfeld, H.; Blackburn, H. Livestock and the Environment: Finding a Balance; European Commission Directorate-General for Development, Development Policy Sustainable Development and Natural Resources: Rome, Italy, 1997; p. 115. [Google Scholar]
- Finneran, E.; Crosson, P.; O’Kiely, P.; Shalloo, L.; Forristal, D.; Wallace, M. Stochastic simulation of the cost of home-produced feeds for ruminant livestock systems. J. Agric. Sci. 2012, 150, 123–139. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Van den Pol-van Dasselaar, A.; Hennessy, D.; Isselstein, J. Grazing of dairy cows in Europe—An in-depth analysis based on the perception of grassland experts. Sustainability 2020, 12, 1098. [Google Scholar] [CrossRef]
- Crump, A.; Jenkins, K.; Bethell, E.J.; Ferris, C.P.; Arnott, G. Pasture Access Affects Behavioral Indicators of Wellbeing in Dairy Cows. Animals 2019, 9, 902. [Google Scholar] [CrossRef]
- Kennedy, E.; O’Donovan, M.; Murphy, J.-P.; Delaby, L.; O’Mara, F. Effects of grass pasture and concentrate-based feeding systems for spring-calving dairy cows in early spring on performance during lactation. Grass Forage Sci. 2005, 60, 310–318. [Google Scholar] [CrossRef]
- Huyghe, C.; De Vliegher, A.; van Gils, B.; Peeters, A. Grasslands and Herbivore Production in Europe and Effects of Common Policies; Éditions Quae: Versailles, France, 2014. [Google Scholar]
- Hurtado-Uria, C.; Hennessy, D.; Shalloo, L.; O’Connor, D.; Delaby, L. Relationships between meteorological data and grass growth over time in the south of Ireland. Ir. Geogr. 2013, 46, 175–201. [Google Scholar] [CrossRef]
- Ruelle, E.; Delaby, L.; Hennessy, D. Development of the Moorepark St Gilles grass growth model (MoSt GG model): A predictive model for grass growth for pasture based systems. Eur. J. Agron. 2018, 99, 81–90. [Google Scholar] [CrossRef]
- Wims, C.M.; Deighton, M.H.; Lewis, E.; O’Loughlin, B.; Delaby, L.; Boland, T.M.; O’Donovan, M. Effect of pregrazing herbage mass on methane production, dry matter intake, and milk production of grazing dairy cows during the mid-season period. J. Dairy Sci. 2010, 93, 4976–4985. [Google Scholar] [CrossRef]
- Ganche, E.; Delaby, L.; O’Donovan, M.; Boland, T.M.; Galvin, N.; Kennedy, E. Post-grazing sward height imposed during the first 10 weeks of lactation: Influence on early and total lactation dairy cow production, and spring and annual sward characteristics. Livest. Sci. 2013, 157, 299–311. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A. Grass and Forage Crops. In Animal Nutrition, 5th ed.; Longman Group Ltd.: New York, NY, USA, 1998; Chapter 18. [Google Scholar]
- Egan, M.; Galvin, N.; Hennessy, D. Incorporating white clover (Trifolium repens L.) into perennial ryegrass (Lolium perenne L.) swards receiving varying levels of nitrogen fertiliser: Effects on milk and herbage production. J. Dairy Sci. 2018, 101, 3412–3427. [Google Scholar] [CrossRef]
- Riberio Filho, H.M.N.; Delagarde, R.; Peyraud, J.L. Inclusion of white clover in strip-grazed perennial ryegrass swards: Herbage intake and milk yield of dairy cows at different ages of sward regrowth. Anim. Sci. 2003, 77, 499–510. [Google Scholar] [CrossRef]
- Peyraud, J.L.; Delagarde, R. Managing variations in dairy cow nutrient supply under grazing. Animal 2013, 7, 57–67. [Google Scholar] [CrossRef]
- Dias, K.; Garcia, S.; Islam, M.R.; Clark, C. Milk yield, milk composition, and the nutritive value of feed accessed varies with the milking order for pasture-based dairy cattle. Animals 2019, 9, 60. [Google Scholar] [CrossRef]
- MacAdam, J.W.; Villalba, J.J. Beneficial effects of temperate forage legumes that contain condensed tannins. Agriculture 2015, 5, 475–491. [Google Scholar] [CrossRef]
- Distel, R.A.; Arroquy, J.I.; Lagrange, S.; Villalba, J.J. Designing diverse agricultural pastures for improving ruminant production systems. Front. Sustain. Food Syst. 2020, 4, 596869. [Google Scholar] [CrossRef]
- Niderkorn, V.; Jayanegara, A. Opportunities offered by plant bioactive compounds to improve silage quality, animal health and product quality for sustainable ruminant production: A review. Agronomy 2021, 11, 86. [Google Scholar] [CrossRef]
- Kaur, A.P.; Bhardwaj, S.; Dhanjal, D.S.; Nepovimova, E.; Cruz-Martins, N.; Kuca, K.; Chopra, C.; Singh, R.; Kumar, H.; Sen, F.; et al. Plant prebiotics and their role in the amelioration of diseases. Biomolecules 2021, 11, 440. [Google Scholar] [CrossRef]
- Joubran, A.M.; Pierce, K.M.; Garvey, N.; Shalloo, L.; O’Callaghan, T.F. Invited review: A 2020 perspective on pasture-based dairy systems and products. J. Dairy Sci. 2021, 104, 7364–7382. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Jáuregui, C.; Oesterheld, M. Effects of grazing intensity on plant richness and diversity: A meta-analysis. Oikos 2018, 127, 757–766. [Google Scholar] [CrossRef]
- Tälle, M.; Deák, B.; Poschlod, P.; Valkó, O.; Westerberg, L.; Milberg, P. Grazing vs. mowing: A meta-analysis of biodiversity benefits for grassland management. Agric. Ecosyst. Environ. 2016, 222, 200–212. [Google Scholar] [CrossRef]
- Perotti, E.; Probo, M.; Pittarello, M.; Lonati, M.; Lombardi, G. A 5-year rotational grazing changes the botanical composition of sub-alpine and alpine grasslands. Appl. Veg. Sci. 2018, 21, 647–657. [Google Scholar] [CrossRef]
- Bailey, D.W.; Dumont, B.; Wallisdevries, M.F. Utilization of heterogeneous grasslands by domestic herbivores: Theory to management. Ann. Zootech. 1998, 47, 321–333. [Google Scholar] [CrossRef]
- Kramer, K.; Groen, T.A.; van Wieren, S.E. The interacting effects of ungulates and fire on forest dynamics: An analysis using the model FORSPACE. For. Ecol. Manag. 2003, 181, 205–222. [Google Scholar] [CrossRef]
- Sternberg, M.; Gutman, M.; Perevolotsky, A.; Ungar, E.D.; Kigel, J. Vegetation response to grazing management in a Mediterranean herbaceous community: A functional group approach. J. Appl. Ecol. 2000, 37, 224–237. [Google Scholar] [CrossRef]
- Adler, P.; Raff, D.; Lauenroth, W. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 2001, 128, 465–479. [Google Scholar] [CrossRef]
- Perevolotsky, V.I. Integrating landscape ecology in the conservation of Mediterranean ecosystems: The Israeli experience. Isr. J. Plant Sci. 2005, 53, 203–213. [Google Scholar] [CrossRef]
- Rook, J.; Tallowin, J.R.B. Grazing and pasture management for biodiversity benefit. Anim. Res. 2003, 52, 181–189. [Google Scholar] [CrossRef]
- Clergue, B.; Amiaud, B.; Pervanchon, F.; Lasserre-Joulin, F.; Plantureux, S. Biodiversity: Function and assessment in agricultural areas. A review. Agron. Sustain. Dev. 2005, 25, 1–15. [Google Scholar] [CrossRef]
- Hodapp, D.; Borer, E.T.; Harpole, W.S.; Lind, E.M.; Seabloom, E.W.; Adler, P.B.; Alberti, J.; Arnillas, C.A.; Bakker, J.D.; Biederman, L.; et al. Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. Ecol. Lett. 2018, 21, 1364–1371. [Google Scholar] [CrossRef]
- Milchunas, G.; Lauenroth, W.K. Quantitative Effects of Grazing on Vegetation and Soils Over a Global Range of Environments. Ecol. Monogr. 1993, 63, 327–366. [Google Scholar] [CrossRef]
- Borer, T.; Seabloom, E.W.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Lind, E.M.; Adler, P.B.; Alberti, J.; Anderson, T.M.; Bakker, J.D.; et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 2014, 508, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Havstad, K.M.; Peters, D.P.C.; Skaggs, R.; Brown, J.; Bestelmeyer, B.; Fredrickson, E.; Herrick, J.; Wright, J. Ecological services to and from rangelands of the United States. Ecol. Econ. 2007, 64, 261–268. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K. Potential soil carbon sequestration in overgrazed grassland ecosystems. Global Biogeochem. Cycles 2002, 16, 90-1–90-9. [Google Scholar] [CrossRef]
- Morgan, J.A.; Parton, W.; Derner, J.D.; Gilmanov, T.G.; Smith, D.P. Importance of early season conditions and grazing on carbon dioxide fluxes in Colorado shortgrass steppe. Rangel. Ecol. Manag. 2016, 69, 342–350. [Google Scholar] [CrossRef]
- Van Vuuren, A.M.; Van den Pol-van Dasselaar, A. Grazing systems and feed supplementation. In Fresh Herbage for Dairy Cattle, the Key to a Sustainable Food Chain; Elgersma, A., Dijkstra, J., Tamminga, S., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 18, pp. 85–101. [Google Scholar]
- Chapman, D.F.; Lee, J.M.; Waghorn, G.C. Interaction between plant physiology and pasture feeding value: A review. Crop Pasture Sci. 2014, 65, 721–734. [Google Scholar] [CrossRef]
- Van den Pol-van Dasselaar, A.; Vellinga, T.V.; Johansen, A.; Kennedy, E. To graze or not to graze, that’s the question. In Proceedings of the 22nd General Meeting of the European Grassland Federation, Uppsala, Sweden, 9–12 June 2008; pp. 706–716. Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/52697 (accessed on 1 April 2023).
- Van den Pol, A.; de Vliegher, A.; Hennessy, D.; Isselstein, J.; Peyraud, J.L. The Future of Grazing. In Proceedings of the Third Meeting of the EGF Working Group “Grazing”; Livestock Research Report 906; Wageningen UR (University & Research Centre) Livestock Research: Wageningen, The Netherlands, 2015; Available online: https://www.europeangrassland.org/fileadmin/documents/Working_Groups/Grazing/906_The_future_of_grazing_-_Van_den_Pol-van_Dasselaar_et_al.pdf (accessed on 15 March 2023).
- Knaus, W. Perspectives on pasture versus indoor feeding of dairy cows. J. Sci. Food Agric. 2016, 96, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Läpple, D.; Sirr, G. Dairy intensification and quota abolition: A comparative study of production in Ireland and The Netherlands. EuroChoices 2019, 18, 26–32. [Google Scholar] [CrossRef]
- Schingoethe, D.J. A 100-year review: Total mixed ration feeding of dairy cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef]
- Jerrentrup, J.S.; Wrage-Mönnig, N.; Röver, K.U.; Isselstein, J. Grazing intensity affects insect diversity via sward structure and heterogeneity in a long-term experiment. J. Appl. Ecol. 2014, 51, 968–977. [Google Scholar] [CrossRef]
- McCarthy, B.; Delaby, L.; Pierce, K.M.; McCarthy, J.; Fleming, C.; Brennan, A.; Horan, B. The multi-year cumulative effects of alternative stocking rate and grazing management practices on pasture productivity and utilization efficiency. J. Dairy Sci. 2016, 99, 3784–3797. [Google Scholar] [CrossRef] [PubMed]
- Tallowin, J.R.B.; Rook, A.J.; Rutter, S.M. Impact of grazing management on biodiversity of grasslands. Anim. Sci. 2005, 81, 193–198. [Google Scholar] [CrossRef]
- Langworthy, A.D.; Verdon, M.; Freeman, M.J.; Corkrey, R.; Hills, J.L.; Rawnsley, R.P. Virtual fencing technology to intensively graze lactating dairy cattle. I: Technology efficacy and pasture utilization. J. Dairy Sci. 2021, 104, 7071–7083. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Cotrufo, M.F. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science 2022, 377, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.A.; Domingo, N.G.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5 and 2 °C climate change targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy, 2013; Available online: https://www.fao.org/3/i3437e/i3437e.pdf (accessed on 1 April 2023).
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef]
- Smith, P.; Balmford, A. Climate change: ‘no get out of jail free card’. Vet. Rec. 2020, 186, 71. [Google Scholar] [CrossRef]
- White, R.; Murray, S.; Rohweder, M. Pilot Analysis of Global Ecosystems (PAGE): Grassland Ecosystems; World Resources Institute (WRI): Washington, DC, USA, 2000; Available online: http://pdf.wri.org/page_grasslands.pdf (accessed on 1 April 2023).
- Scurlock, J.M.O.; Hall, D.O. The global carbon sink: A grassland perspective. Glob. Chang. Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef]
- Reeder, J.D.; Schuman, G.E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environ. Pollut. 2002, 116, 457–463. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Z.; Peng, C. Land use induced changes of organic carbon storage in soils of China. Glob. Chang. Biol. 2003, 9, 305–315. [Google Scholar] [CrossRef]
- Aryal, D.R. Grazing intensity in grassland ecosystems: Implications for carbon storage and functional properties. CABI Rev. 2022, 13, 2164. [Google Scholar] [CrossRef]
- Apfelbum, S.L.; Thompson, R.; Wang, F.; Mosier, S.; Teague, R.; Byck, P. Vegetation, water infiltration, and soil carbon response to Adaptive Multi-Paddock and Conventional grazing and Southeastern USA ranches. J. Environ. Manag. 2022, 308, 114576. [Google Scholar] [CrossRef] [PubMed]
- Savian, J.V.; Schons, R.M.T.; de Souza Filho, W.; Zubieta, A.S.; Kindlein, L.; Bindelle, J.; Bayer, C.; Bremm, C.; Carvalho, P.C.F. ‘Rotatinuous’ stocking as a climate-smart grazing management strategy for sheep production. Sci. Total Environ. 2021, 753, 141790. [Google Scholar] [CrossRef] [PubMed]
- Funakawa, S.; Fujii, K.; Kadono, A.; Watanabe, T.; Kosaki, T. Could Soil Acidity Enhance Sequestration of Organic Carbon in Soils? In Soil Carbon. Progress in Soil Science; Hartemink, A., McSweeney, K., Eds.; Springer: Cham, Switzerland, 2014; pp. 209–216. [Google Scholar] [CrossRef]
- FAO STAT Statistical Database 2013; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015.
- Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, 22, GB1003. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Shcaepman, M.E. Global Assessment of Land Degradation and Improvement. 1. Identification by Remote Sensing; Report 2008/01; ISRIC, World Soil Information: Waginengen, The Netherlands, 2008; Available online: https://www.isric.org/sites/default/files/isric_report_2008_01.pdf (accessed on 14 April 2023).
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; Smith, J. Greenhouse gas mitigation in agriculture. Philos. Trans. Royal Soc. B 2008, 363, 789–813. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K. Grassland management activity data: Current sources and future needs. Environ. Manag. 2004, 33, 467–473. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Barbero, R.P.; Romanzini, E.P.; Teobaldo, R.W.; Ongaratto, F.; Fernandes, M.H.M.R.; Ruggieri, A.C.; Reis, R.A. Intensification: A key strategy to achieve great animal and environmental beef cattle production sustainability in Brachiaria grasslands. Sustainability 2020, 12, 6656. [Google Scholar] [CrossRef]
- Rasche, L.; Schneider, U.A.; Steinhauser, J. A stakeholders’ pathway towards a future land use and food system in Germany. Sustain. Sci. 2023, 18, 441–455. [Google Scholar] [CrossRef]
- Teague, W.R.; Apfelbaum, S.; Lai, R.; Kneotes, U.P.; Rowntree, J.; Davies, C.A.; Conser, R.; Rasmussen, M.; Hatfield, J.; Wang, T.; et al. The role of ruminants in reducing agriculture’s carbon footprint in North America. J. Soil Water Conserv. 2016, 71, 156–164. [Google Scholar] [CrossRef]
- Scholtz, M.M.; Jordaan, F.J.; Thuli Chabalala, N.; Pyoos, G.M.; Joel Mamabolo, M.; Neser, F.W. A balanced perspective on the contribution of extensive ruminant production to greenhouse gas emissions in southern Africa. Afr. J. Range Forage Sci. 2023, 40, 107–113. [Google Scholar] [CrossRef]
- Podkówka, Z.; Podkówka, W. Emisja gazów cieplarnianych przez krowy. Przegląd Hod. 2011, 3, 1–4. Available online: http://ptz.icm.edu.pl/wp-content/uploads/2011/12/PH_3_2011_Podkowka.pdf (accessed on 10 March 2023).
- Berça, A.S.; Romanzini, E.P.; da Silva Cardoso, A.; Ferreira, L.E.; D’Aurea, A.P.; Fernandes, L.B.; Reis, R.A. Advances in Pasture Management and Animal Nutrition to Optimize Beef Cattle Production in Grazing Systems. In Animal Feed Science and Nutrition-Production, Health and Environment; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Króliczewska, B.; Pecka-Kiełb, E.; Bujok, J. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture 2023, 13, 602. [Google Scholar] [CrossRef]
- Van de Ven, G.W.J.; Van Keulen, H. A mathematical approach to comparing environmental and economic goals in dairy farming: Identifying strategic development options. Agric. Syst. 2007, 94, 231–246. [Google Scholar] [CrossRef]
- Williams, P.H.; Haynes, R.J. Comparison of initial wetting pattern, nutrient concentrations in soil solution and the fate of 15 N-labelled urine in sheep and cattle urine patch areas of pasture soil. Plant Soil 1994, 162, 49–59. [Google Scholar] [CrossRef]
- Haynes, R.J.; Williams, P.H. Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv. Agron. 1993, 49, 119–199. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutr. Cycl. Agroecosyst. 2002, 64, 237–256. [Google Scholar] [CrossRef]
- Weier, K.L. Nitrogen use and losses in agriculture in subtropical Australia. Fertil. Res. 1994, 39, 245–257. [Google Scholar] [CrossRef]
- Van Duinkerken, G.; André, G.; Smits, M.C.J.; Monteny, G.J.; Šebek, L.B.J. Effect of rumen-degradable protein balance and forage type on bulk milk urea concentration and emission of ammonia from dairy cow houses. J. Dairy Sci. 2005, 88, 1099–1112. [Google Scholar] [CrossRef]
- Van den Pol-van Dasselaar, A.; Van Beusichem, M.L.; Oenema, O. Effects of nitrogen input and grazing on methane uptake by extensively and intensively managed grasslands. Biol. Fertil. Soils 1999, 29, 24–30. [Google Scholar] [CrossRef]
- Jiao, H.P.; Dale, A.J.; Carson, A.F.; Murray, S.; Gordon, A.W.; Ferris, C.P. Effect of concentrate feed level on methane emissions from grazing dairy cows. J. Dairy Sci. 2014, 97, 7043–7053. [Google Scholar] [CrossRef]
- Olff, H.; Ritchie, M.E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 1998, 13, 261–265. [Google Scholar] [CrossRef]
- Piek, H. Experiences with grazing on nature reserves in the Netherlands. In Grazing and Conservation Management; Conservation Biology Series; Wallis DeVries, M.F., Bakker, J.P., van Wieren, S.E., Eds.; Kluwer: Dordrecht, The Netherlands, 1998; Volume 11, pp. 253–272. [Google Scholar]
- Metera, E.; Sakowski, T.; Słoniewski, K.; Romanowicz, B. Grazing as a tool to maintain biodiversity of grassland—A review. Anim. Sci. Pap. Rep. 2010, 28, 315–334. [Google Scholar]
- Ausden, M. Habitat Management for Conservation; A Handbook of Techniques; Oxford University Press: New York, NY, USA, 2007; p. 411. [Google Scholar]
- Peco, B.; Sanchez, A.M.; Azcarate, F.A. Abandonment in grazing systems: Consequences for vegetation and soil. Agric. Ecosyst. Environ. 2006, 113, 284–294. [Google Scholar] [CrossRef]
- Benstead, P.; Drake, M.; José, P.; Mountford, J.O.; Newbold, C.; Treweek, J. The Wet Grassland Guide—Managing Floodplain and Coastal Wet Grassland for Wildlife; Royal Society for the Protection of Birds: Sandy, UT, USA, 1997; p. 254. [Google Scholar]
- Jones, A.T.; Hayes, M.J. Increasing Floristic Diversity in Grassland: The Effects of Management Regime and Provenance on Species Introduction. Biol. Conserv. 1999, 87, 381–390. [Google Scholar] [CrossRef]
- Smith, R.S.; Shiel, R.S.; Millward, D.; Corkhill, P. The interactive effects of management on the productivity and plant community structure of an upland meadow: An 8-year field trial. J. Appl. Ecol. 2000, 37, 1029–1043. [Google Scholar] [CrossRef]
- Van Braeckel, A.; Bokdam, J. Habitat selection of cattle and horses in the Lower Basin of the Biebrza National Park. In Grazing as a Conservation Management Tool in Peatland, Report of a Workshop Held 22–26 April in Goniądz, Poland; Wageningen University: Wageningen, The Netherlands, 2002; pp. 60–63. [Google Scholar]
- Todd, P.A.; Phillips, J.D.P.; Putwain, P.D.; Marrs, R.H. Control of Molinia caerulea on moorland. Grass Forage Sci. 2000, 55, 181–191. [Google Scholar] [CrossRef]
- Taylor, K.; Rowland, A.P.; Jones, H.E. Molinia caerulea (L.) Moench. J. Ecol. 2001, 89, 126–144. [Google Scholar] [CrossRef]
- Kulik, M. Changes of biodiversity and species composition of Molinia meadow depending on use method. Pol. J. Environ. Stud. 2014, 23, 773–782. [Google Scholar]
- Jermaczek-Sitak, M. Charakter i stan zachowania łąk selernicowych Cnidion w zachodniej Polsce a warunki wodne. Przegląd Przyr. XXII 2011, 3, 83–90. [Google Scholar]
- Šarapatka, B.; Urban, J. Rolnictwo Ekologiczne w Praktyce; Wyd. Instytut Technologiczno-Przyrodniczy: Falenty, Poland, 2012; p. 470. [Google Scholar]
- Staniak, M.; Feledyn-Szewczyk, B. Bioróżnorodność Obszarów Wiejskich—Znaczenie i Zagrożenia; Wyd. Fundacja Ziemia i Ludzie: Warsaw, Poland, 2016; p. 112. [Google Scholar]
- Bullock, J.M. Plant Competition and Population Dynamics. In The Ecology and Management of Grazing Systems; Hodgson, J., Illius, A.W., Eds.; CABI Publishing: Wallingford, UK, 1996; pp. 69–100. [Google Scholar]
- Wasilewski, Z. Wypas Jako Instrument Ochrony Różnorodności Biologicznej; Biblioteczka Krajowego Programu Rolnośrodowiskowego: Warsaw, Poland, 2003; p. 28. [Google Scholar]
- Kucharska, A.; Kuźnicka, E. Importance of grazing sheep for natural, cultural and productive heritage protection in the Tatra Mountains on an example of the Tatra National Park. Post. Nauk Rol. 2005, 5, 91–100. [Google Scholar]
- Wróbel, I. Dynamika roślinności łąkowej w warunkach stosowania ciągłych zabiegów ochronnych w Pienińskim Parku Narodowym. Stud. Nat. 2006, 54, 241–264. [Google Scholar]
- Sosin-Bzducha, E.; Chełmińska, A.; Sikora, J. Wypas owiec jako element czynnej ochrony Krajobrazu Wyżyny Krakowsko-Częstochowskiej. Wiadomości Zootech. 2012, 50, 85–88. [Google Scholar]
- Schatz, T.; Ffloukes, D.; Shotton, P.; Hearnden, M. Effect of high intensity rotational grazing on the growth of cattle grazing buffalo pasture in the northern territory and on carbon sequestration. Anim. Prod. Sci. 2020, 60, 1814–1821. [Google Scholar] [CrossRef]
- Wells, H.B.M.; Crego, R.D.; Ekadeli, J.; Namoni, M.; Kimuyo, D.M.; Odadi, W.O.; Porenskym, L.M.; Dougill, A.J.; Stringer, L.C.; Young, T.P. Less is More: Lowering cattle stocking rates enhances wild herbivore habitual use and cattle foraging efficiency. Front. Ecol. 2022, 11, 825689. [Google Scholar] [CrossRef]
- McDonald, S.E.; Reid, N.; Smith, R.; Waters, C.M.; Hunter, J.; Rader, R. Rotational grazing management achieves similar plant diversity outcome in areas managed for conservation in a semi-arid rangeland. Rangel. J. 2019, 41, 135–143. [Google Scholar] [CrossRef]
- Kitczak, T.; Czyż, H.; Gos, A. Skład florystyczny, plon i skład chemiczny runi pastwiska i łąki przemiennie użytkowanej. Zesz. Nauk. AR w Krakowie 2000, 368, 137–143. Available online: https://www.itp.edu.pl/old/wydawnictwo/woda/zeszyt_62_2018/Kitczak%20Jankowski.pdf (accessed on 10 January 2023).
- Davies, A.; Morgan, C.T.; Fothergill, M. Effects of extensification on sheep production from an upland permanent pasture. In Proceedings of the 15th General Meeting of the EGF, Wageningen, The Netherlands, 6–9 June 1994; pp. 290–301. Available online: https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-16a9258b-10ee-4368-a7a9-224af577be9e (accessed on 21 January 2023).
- Neuteboom, J.H.; Mametje, L.T.; Lantiga, E.A.; Wind, K. Cattle weigh changes and botanical composition of am unfertilized grass sward under continuous grazing. In Proceedings of the 15th General Meeting of the EGF, Wageningen, The Netherlands, 6–9 June 1994; pp. 320–323. Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/216064 (accessed on 2 March 2023).
- Kasperczyk, M.; Kacorzyk, P. Wartość użytkowa runi pastwiskowej w zależności od częstotliwości spasania i poziomu nawożenia. Zesz. Prob. Post. Nauk Roln. 1996, 442, 205–214. Available online: https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-fdcc779a-5a9c-42af-90dc-88964fddbb25?q=bwmeta1.element.agro-volume-fa500261-f14b-4670-9d6a-b319fb308895;20&qt=CHILDREN-STATELESS (accessed on 1 April 2023).
- Harris, W. Effects of quality and pattern of herbage removal on botanical composition of temperate pasture. Grassl. Sci. Eur. 1998, 3, 322–324. [Google Scholar]
- Hopkins, A.; Hrabe, F. Organic grassland farming and nature conservation. Grassl. Sci. Eur. 2001, 6, 91–106. [Google Scholar]
- Grzegorczyk, S. Użytkowanie ekosystemów trawiastych a kształtowanie środowiska. Zesz. Prob. Post. Nauk Roln. 2016, 586, 19–32. Available online: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-ea177dff-f51d-43a8-8d25-e0648cf5aca5216064 (accessed on 25 February 2023).
- Schönbach, P.; Wan, H.; Gierus, M.; Bai, Y.; Müller, K.; Lin, L.; Susenbeth, A.; Taube, F. Grassland responses to grazing: Effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant Soil 2011, 340, 103–115. [Google Scholar] [CrossRef]
- Tokarska-Guzik, B.; Dajdok, Z.; Zając, M.; Zając, A.; Urbisz, A.; Danielewicz, W.; Hołdyński, C. Rośliny Obcego Pochodzenia w Polsce ze Szczególnym Uwzględnieniem Gatunków Inwazyjnych; Wyd. Generalna Dyrekcja Ochrony Środowiska: Warsaw, Poland, 2012; p. 196. [Google Scholar]
- Leavier, J.D. Milk production from grazed temperate grassland. J. Dairy Res. 1985, 52, 313–344. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.R.; Berry, D.P.; Bryant, A.M.; Burke, C.R.; Butler, S.T.; Dillon, P.G.; Donaghy, D.J.; Horan, B.; Macdonald, K.A.; Macmillan, K.L. A 100-year review: A century of change in temperate grazing dairy systems. J. Dairy Sci. 2017, 100, 10189–10233. [Google Scholar] [CrossRef] [PubMed]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2. [Google Scholar] [CrossRef]
- Dorrough, J.; Yen, A.; Turner, V.; Clark, S.G.; Crosthwaite, J.; Hirth, J.R. Livestock grazing management and biodiversity conservation in Australian temperate grassy landscapes. Aust. J. Agric. Res. 2004, 55, 279–295. [Google Scholar] [CrossRef]
- Briske, D.D.; Sayre, N.F.; Huntsinger, L.; Fernández-Giménez, M.; Budd, B.; Derner, J.D. Origin, persistence, and resolution of the rotational grazing debate: Integrating human dimensions into rangeland research. Rangel. Ecol. Manag. 2011, 64, 325–334. [Google Scholar] [CrossRef]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Haile, N.; DeLaune, P.B.; Conover, D.M. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agric. Ecosyst. Environ. 2011, 141, 310–322. [Google Scholar] [CrossRef]
- Sanderman, J.; Reseigh, J.; Wurst, M.; Young, M.A.; Austin, J. Impacts of rotational grazing on soil carbon in native grass-based pastures in Southern Australia. PLoS ONE 2015, 10, e0136157. [Google Scholar] [CrossRef]
- Kahn, L.P.; Earl, J.M.; Nicholls, M. Herbage mass thresholds rather than plant phenology are a more useful cue for grazing management decisions in the mid-north region of South Australia. Rangel. J. 2010, 32, 379–388. [Google Scholar] [CrossRef]
- Sanjari, G.; Yu, B.; Ghadiri, H.; Ciesiolka, C.A.; Rose, C.W. Effects of time-controlled grazing on runoff and sediment loss. Soil Res. 2009, 47, 796–808. [Google Scholar] [CrossRef]
- Bai, G.; Bao, Y.; Du, G.; Qi, Y. Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem. Mycorrhiza 2013, 23, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Jordon, M.W.; Willis, K.J.; Bürkner, P.-C.; Petrokofsky, G. Rotational grazing and multispecies herbal leys increase productivity in temperate pastoral systems—A meta-analysis. Agric. Ecosyst. Environ. 2022, 337, 108075. [Google Scholar] [CrossRef]
- Rui, Y.; Jackson, R.D.; Cotrufo, M.F.; Ruak, M.D. Persistent soil carbon enhanced in mollisols by well-managed grassland but not annual grain or dairy forage cropping systems. Proc. Natl. Acad. Sci. USA 2022, 119, e2118931119. [Google Scholar] [CrossRef]
- Mosier, S.; Apfelbaum, S.; Byck, P.; Cotrufo, F.M.F. Adaptive multi paddock grazing enhances nitrogen stock and stabilization throughout southeastern grazing lands. J. Environ. Manag. 2021, 288, 112409. [Google Scholar] [CrossRef]
- deOtalora, X.; Epelde, L.; Arranz, J.; Garbisu, C.; Ruiz, R.; Mandaluniz, N. Regenerative rotational grazing management of dairy sheep increases springtime grass production and topsoil carbon storage. Ecol. Indic. 2020, 125, 107484. [Google Scholar] [CrossRef]
- Rogalski, M.; Kardyńska, S.; Wieczorek, A.; Kryszak, J.; Biniaś, J. Przestrzenne zróżnicowanie składu botanicznego i wysokości spasanej runi a strategia spożywania zielonki pastwiskowej przez bydło. Zesz. Nauk. AR Krakowie 2000, 73, 263–268. [Google Scholar]
- Wagner, M.; Waterton, C.; Norton, L.R. Mob grazing: A Nature-based solution for British farms producing pasture-fed livestock. Nat.-Based Solut. 2023, 3, 100054. [Google Scholar] [CrossRef]
- Chen, W.; Huang, D.; Liu, N.; Zhang, Y.; Badgery, W.B.; Wang, X.; Shen, Y. Improved grazing management may increase soil carbon sequestration in temperate steppe. Sci. Rep. 2015, 5, 10892. [Google Scholar] [CrossRef]
- Pei, S.; Fu, H.; Wan, C. Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agric. Ecosyst. Environ. 2008, 124, 33–39. [Google Scholar] [CrossRef]
- McSherry, M.E.; Ritchie, M.E. Effects of grazing on grassland soil carbon: A global review. Glob. Chang. Biol. 2013, 19, 1347–1357. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.; Jones, A.; O’Brien, M.; Ratner, J.; Wuerthner, G. Holistic management: Misinformation on the science of grazed ecosystems. Intern. J. Biodiver. 2014, 2014, 163431. [Google Scholar] [CrossRef]
- Teague, R.; Provenza, F.; Kreuter, U.; Steffens, T.; Barnes, M. Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? J. Environ. Manag. 2013, 128, 699–717. [Google Scholar] [CrossRef]
- Wang, T.; Teague, W.R.; Park, S.C.; Bevers, S. Evaluation of long-term economic and ecological consequences of continuous and multi-paddock grazing. Agric. Sys. 2018, 165, 197–207. [Google Scholar] [CrossRef]
- Teague, R.; Barnes, M. Grazing management that regenerates ecosystem function and grazingland livelihoods. Afr. J. Range Forage Sci. 2017, 34, 77–86. [Google Scholar] [CrossRef]
- Hillenbrand, M.; Thompson, R.; Wang, F.; Apfelbaum, S.; Teague, R. Impacts of holistic planned grazing with bison compared to continuous grazing with cattle in South Dakota shortgrass prairie. Agric. Ecosyst. Environ. 2019, 279, 156–168. [Google Scholar] [CrossRef]
- Park, J.Y.; Ale, S.; Teague, W.R. Simulated water quality effects of alternate grazing management practices at the ranch and watershed scales. Ecol. Modell. 2017, 360, 1–13. [Google Scholar] [CrossRef]
- Park, J.Y.; Ale, S.; Teague, W.R.; Dowhower, S.L. Simulating hydrologic responses to alternate grazing management practices at the ranch and watershed scales. J. Soil Water Conserv. 2017, 72, 102–121. [Google Scholar] [CrossRef]
- Park, J.Y.; Ale, S.; Teague, W.R.; Jeong, J. Evaluating the ranch and watershed scale impacts of using traditional and adaptive multi-paddock grazing on runoff, sediment and nutrient losses in North Texas, USA. Agric. Ecosyst. Environ. 2017, 240, 32–44. [Google Scholar] [CrossRef]
- Kim, J.; Ale, S.; Kreuter, U.P.; Teague, W.R.; DelGrosso, S.J.; Dowhower, S.L. Evaluating the impacts of alternative grazing management practices on soil carbon sequestration and soil health indicators. Agric. Ecosyst. Environ. 2023, 342, 108234. [Google Scholar] [CrossRef]
- Benthien, O.; Braun, M.; Rieman, J.C.; Stolter, C. Long-term effect of sheep and goat grazing on plant diversity in a semi dry natural grassland habitat. Hellyon 2018, 4, e00556. [Google Scholar] [CrossRef]
- Teague, R.; Kreuter, U. Managing grazing to restore soil health, ecosystem function, and ecosystem services. Front. Sustain. Food Sci. 2020, 157, 534187. [Google Scholar] [CrossRef]
- Fraser, M.D.; Garcia, R.R. Mixed species grazing management to improve sustainability and biodiversity. OIE 2018, 37, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Barry, S.; Huntsinger, L. Rangeland sharing, livestock grazing’s role in conservation of imperiled species. Animals 2021, 13, 4466. [Google Scholar] [CrossRef]
- Evans, D.M.; Redpath, S.M.; Evans, S.A.; Elston, D.A.; Gardner, C.J.; Dennis, P.; Pakeman, R.J. Low intensity mixed livestock grazing improves breeding abundance of common insectivorous passerine. Biol. Lett. 2016, 2, 636–638. [Google Scholar] [CrossRef]
- Lee-Mader, E.; Stine, A.; Fowler, J.; Hopwood, J.; Vaughan, M. Cover Cropping for Pollinators and Beneficial Insects, SARE (Sustainable Agriculture Research Education USDA). 2014. Available online: Save.org/wp-contact/uploads/cover-cropping-forpollinators-and-beneficial-insects.pdf (accessed on 7 November 2022).
- Huertas, S.M.; Bobadilla, P.E.; Alcántara, I.; Akkermans, E.; van Eerdenburg, F.J.C.M. Benefits of Silvopastoral Systems for Keeping Beef Cattle. Animals 2021, 11, 992. [Google Scholar] [CrossRef]
- Husak, A.L.; Grado, S.C. Monetary benefits in a southern silvopastoral system. South J. Appl. For. 2002, 26, 159–164. [Google Scholar] [CrossRef]
- Sarabia, L.; Solorio, F.J.; Ramírez, L.; Ayala, A.; Aguilar, C.; Ku, J.; Almeida, C.; Cassador, R.; Alves, B.J.; Boddey, R.M. Improving the nitrogen cycling in livestock systems through silvopastoral systems. In Nutrient Dynamics for Sustainable Crop Production; Meena, R., Ed.; Springer: Singapore, 2020; pp. 189–213. [Google Scholar] [CrossRef]
- Skonieski, F.R.; Souza, E.R.D.; Gregolin, L.C.B.; Fluck, A.C.; Costa, O.A.D.; Destri, J.; Neto, A.P. Physiological response to heat stress and ingestive behavior of lactating Jersey cows in silvopasture and conventional pasture grazing systems in a Brazilian subtropical climate zone. Trop. Anim. Health Prod. 2021, 53, 213. [Google Scholar] [CrossRef]
- Alyssa, A.C. Lamb Growth and Pasture Production in Agrivoltaic Production System. Bachelor’s Thesis, Oregon State University, Corvallis, OR, USA, 2020. Available online: https://ir.library.oregonstate.edu/concern/honors_college_theses/v405sh87r (accessed on 3 November 2022).
- Kochencloerfer, N.; Thonney, M.L. Grazing Sheep on Solar Sites in New York, Opportunities and Challenges; Cornell College of Agriculture. Sustainability Cornell University: Ithaca, NY, USA, 2021; Available online: https://solargrazing.org/wp-content/uploads/2021/02/Solar-Site-Sheep-Grazing-in-NY.pdf (accessed on 3 March 2023).
- Mancuso, D.; Castagnolo, G.; Porto, S.M.C. Cow Behavioural Activities in Extensive Farms: Challenges of Adopting Automatic Monitoring Systems. Sensors 2023, 23, 3828. [Google Scholar] [CrossRef]
- Lee, C. An Apparatus and Method for the Virtual Fencing of an Animal. International Patent Application No. PCT/AUT2005/001056, 26 January 2006. [Google Scholar]
- Lee, C.; Reed, M.T.; Wark, T.; Crossman, C.; Valencia, P. Control Device, and Method, for Controlling the Location of an Animal. International Patent Application No. PCT/AU2009/000943, 28 January 2010. [Google Scholar]
- Umstatter, C. The evolution of virtual fences: A review. Comput. Electron. Agric. 2011, 75, 10–22. [Google Scholar] [CrossRef]
- Lee, C.; Henshall, J.M.; Wark, T.J.; Crossman, C.C.; Reed, M.T.; Brewer, H.G.; O’Grady, J.; Fisher, A.D. Associative learning by cattle to enable effective and ethical virtual fences. Appl. Anim. Behav. Sci. 2009, 119, 15–22. [Google Scholar] [CrossRef]
- Campbell, D.L.M.; Lea, J.M.; Haynes, S.J.; Farrer, W.J.; Leigh-Lancaster, C.J.; Lee, C. Virtual fencing of cattle using an automated collar in a feed attractant trial. Appl. Anim. Behav. Sci. 2018, 200, 71–77. [Google Scholar] [CrossRef]
- Bishop-Hurley, G.J.; Swain, D.L.; Anderson, D.M.; Sikka, P.; Crossman, C.; Corke, P. Virtual fencing applications: Implementing and testing an automated cattle control system. Comput. Electron. Agric. 2007, 56, 14–22. [Google Scholar] [CrossRef]
- Jouven, M.; Leroy, H.; Ickowicz, A.; Lapeyronie, P. Can virtual fences be used to control grazing sheep? Rangel. J. 2012, 34, 111–123. [Google Scholar] [CrossRef]
- Brunberg, E.I.; Bøe, K.E.; Sørheim, K.M. Testing a new virtual fencing system on sheep. Acta Agric. Scand. Anim. Sci. 2015, 65, 168–175. [Google Scholar] [CrossRef]
- Brunberg, E.I.; Bergslid, I.K.; Bøe, K.E.; Sørheim, K.M. The ability of ewes with lambs to learn a virtual fencing system. Animal 2017, 11, 2045–2050. [Google Scholar] [CrossRef]
- Marini, D.; Meuleman, D.M.; Belson, S.; Rodenburg, B.T.; Llewellyn, R.; Lee, C. Developing an ethically acceptable virtual fencing system for sheep. Animals 2018, 8, 33. [Google Scholar] [CrossRef]
- Van Erp-van der Kooij, E.; Rutter, S.M. Using precision farming to improve animal welfare. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2020, 15, 1–10. Available online: http://www.cabi.org/cabreviews (accessed on 10 January 2023). [CrossRef]
- Caja, G.; Castro-Costa, A.; Salama, A.A.; Oliver, J.; Baratta, M.; Ferrer, C.; Knight, C.H. Sensing solutions for improving the performance, health and wellbeing of small ruminants. J. Dairy Res. 2020, 87, 34–46. [Google Scholar] [CrossRef]
- Klootwijk, C.W.; Holshof, G.; de Boer, I.J.M.; Van den Pol-Van Dasselaar, A.; Engel, B.; Van Middelaar, C.E. Correcting fresh grass allowance for rejected patches due to excreta in intensive grazing systems for dairy cows. J. Dairy Sci. 2019, 102, 10451–10459. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.C.; Fulkerson, W.J. Opportunities for future Australian dairy systems—A review. Aust. J. Exp. Agric. 2005, 45, 1041–1055. [Google Scholar] [CrossRef]
- Islam, M.R.; Garcia, S.C.; Clark, C.E.F.; Kerrisk, K.L. System fitness of grazeable forages for large herds in automatic milking system. In Proceedings of the International Grassland Congress, Sydney, Australia, 15–19 September 2013; pp. 1717–1718. Available online: https://uknowledge.uky.edu/igc (accessed on 10 January 2023).
- Lyons, N.A.; Kerrisk, K.L.; Garcia, S.C. Comparison of 2 systems of pasture allocation on milking intervals and total daily milk yield of dairy cows in a pasture-based automatic milking system. J. Dairy Sci. 2013, 96, 4494–4504. [Google Scholar] [CrossRef] [PubMed]
- Lyons, L.; Kerrisk, K.L.; Garcia, S.C. Milking frequency management in pasture-based automatic milking system: A review. Livest. Sci. 2014, 159, 102–116. [Google Scholar] [CrossRef]
- Coulon, J.B.; Pradel, P.; Cochard, T.; Poutrel, B. Effect of extreme walking conditions for dairy cows on milk yield, chemical composition, and somatic cell count. J. Dairy Sci. 1998, 81, 994–1003. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Rotz, C.A.; Fultz, S.W.; Rayburn, E.B. Estimating forage mass with a commercial capacitance meter, rising plate meter, and pasture ruler. Agron. J. 2001, 93, 1281–1286. [Google Scholar] [CrossRef]
- Murphy, D.J.; O’Brien, B.; Hennessy, D.; Hurley, M.; Murphy, M.D. Evaluation of the precision of the rising plate meter for measuring compressed sward height on heterogeneous grassland swards. Precis. Agric. 2021, 22, 922–946. [Google Scholar] [CrossRef]
- McSweeney, D.; Coughlan, N.E.; Cuthbert, R.N.; Halton, P.; Ivanov, S. Micro-sonic sensor technology enables enhanced grass height measurement by a rising plate meter. Inf. Process. Agric. 2019, 6, 279–284. [Google Scholar] [CrossRef]
- Moeckel, T.; Safari, H.; Reddersen, B.; Fricke, T.; Wachendorf, M. Fusion of ultrasonic and spectral sensor data for improving the estimation of biomass in grasslands with heterogeneous sward structure. Remote Sens. 2017, 9, 98. [Google Scholar] [CrossRef]
- Lussem, U.; Bolten, A.; Menne, J.; Gnyp, M.L.; Schellberg, J.; Bareth, G. Estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indices. J. Appl. Remote Sens. 2019, 13, 034525. [Google Scholar] [CrossRef]
- Fricke, T.; Richter, F.; Wachendorf, M. Assessment of forage mass from grassland swards by height measurement using an ultrasonic sensor. Comput. Electron. Agric. 2011, 79, 142–152. [Google Scholar] [CrossRef]
- Wijesingha, J.; Astor, T.; Schulze-Brüninghoff, D.; Wengert, M.; Wachendorf, M. Predicting forage quality of grasslands using UAV-borne imaging spectroscopy. Remote Sens. 2020, 12, 126. [Google Scholar] [CrossRef]
- Cooper, S.D.; Roy, D.P.; Schaaf, C.B.; Paynter, I. Examination of the potential of terrestrial laser scanning and structure-from-motion photogrammetry for rapid nondestructive field measurement of grass biomass. Remote Sens. 2017, 9, 531. [Google Scholar] [CrossRef]
- Yuan, W.; Li, J.; Bhatta, M.; Shi, Y.; Baenziger, P.S.; Ge, Y. Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS. Sensors 2018, 18, 3731. [Google Scholar] [CrossRef] [PubMed]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 2018, 73, 1–14. [Google Scholar] [CrossRef]
- Taravat, A.; Wagner, M.P.; Oppelt, N. Automatic grassland cutting status detection in the context of spatiotemporal Sentinel-1 imagery analysis and artificial neural networks. Remote Sens. 2019, 11, 711. [Google Scholar] [CrossRef]
- Duncan, N.B.; Meyer, A.M. Locomotion behavior changes in peripartum beef cows and heifers. J. Anim. Sci. 2019, 97, 509–520. [Google Scholar] [CrossRef]
- Riaboff, L.; Shalloo, L.; Smeaton, A.F.; Couvreur, S.; Madouasse, A.; Keane, M.T. Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Comput. Electron. Agric. 2022, 192, 106610. [Google Scholar] [CrossRef]
- Herlin, A.; Brunberg, E.; Hultgren, J.; Högberg, N.; Rydberg, A.; Skarin, A. Animal Welfare Implications of Digital Tools for Monitoring and Management of Cattle and Sheep on Pasture. Animals 2021, 11, 829. [Google Scholar] [CrossRef]
- Ruuska, S.; Kajava, S.; Mughal, M.; Zehner, N.; Mononen, J. Validation of a pressure sensor-based system for measuring eating, rumination and drinking behaviour of dairy cattle. Appl. Anim. Behav. Sci. 2016, 174, 19–23. [Google Scholar] [CrossRef]
- Campbell, D.L.; Lea, J.M.; Keshavarzi, H.; Lee, C. Virtual fencing is comparable to electric tape fencing for cattle behavior and welfare. Front. Vet. Sci. 2019, 6, 445. [Google Scholar] [CrossRef] [PubMed]
- Goliński, P.; Sobolewska, P.; Stefańska, B.; Golińska, B. Virtual Fencing Technology for Cattle Management in the Pasture Feeding System—A Review. Agriculture 2023, 13, 91. [Google Scholar] [CrossRef]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shalloo, L. Pasture Base Ireland: A grassland decision support system and national database. Comp. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Hopkins, A.; Wilkins, R.J. Temperate grassland: Key developments in the last century and future perspectives. J. Agric. Sci. 2006, 144, 503–523. [Google Scholar] [CrossRef]
- Capstaff, N.M.; Miller, A.J. Improving the yield and nutritional quality of forage crops. Front. Plant Sci. 2018, 9, 535. [Google Scholar] [CrossRef] [PubMed]
- Toupet, R.; Gibbons, A.T.; Goodacre, S.L.; Bell, M.J. Effect of Herbage Density, Height and Age on Nutrient and Invertebrate Generalist Predator Abundance in Permanent and Temporary Pastures. Land 2020, 9, 164. [Google Scholar] [CrossRef]
- Piutti, S.; Romillac, N.; Chanseaume, A.; Slezack-Deschaumes, S.; Manneville, V.; Amiaud, B. Using temporary pastures to enhance soil fertility. Fourrages 2015, 223, 179–187. Available online: http://www.afpf-asso.fr/index/action/ (accessed on 6 February 2023).
- Bailey, J.; Brandsma, J.; Busqué, J.; Elsaesser, M.; Goliński, P.; Crespo, D.G.; Hopkins, A.; Hulin-Bertaud, S.; Krause, A.; Lind, V.; et al. Profitability of permanent grassland. In EIP-AGRI Focus Group Permanent Grassland: Final Report; European Commission: Brussel, Belgium, 2016; pp. 1–44. [Google Scholar]
- Goliński, P.; Bailey, J.; Crespo, D.G.; van den Pol-van Dasselaar, A.; Lind, V.; Mosquera-Losada, M.R.; O’Donovan, M.; Peeters, A.; Porqueddu, C.; Reheul, D. Sustainable grassland production by increased functional group diversification. In EIP-AGRI Focus Group Permanent Grassland; European Commission: Brussel, Belgium, 2014; pp. 1–7. [Google Scholar]
- Lorenz, H.; Reinsch, T.; Kluß, C.; Taube, F.; Loges, R. Does the Admixture of Forage Herbs Affect the Yield Performance, Yield Stability and Forage Quality of a Grass Clover Ley? Sustainability 2020, 12, 5842. [Google Scholar] [CrossRef]
- Van Eekeren, N.; Wagenaar, J.P.; Jansonius, P.J. Mineral content of chicory (Cichorium intybus) and narrow leaf plantain (Plantago lanceolata) in grass-white clover mixtures. In Proceedings of the Quality Legume-Based Forage Systems for Contrasting Environments, Final Meeting, Gumpemstein, Austria, 30 August–3 September 2006; pp. 121–123. [Google Scholar]
- Pirhofer-Walzl, K.; Søegaard, K.; Høgh-Jensen, H.; Eriksen, J.; Sanderson, M.A.; Rasmussen, J. Forage herbs improve mineral composition of grassland herbage. Grass Forage Sci. 2011, 66, 415–423. [Google Scholar] [CrossRef]
- Fraser, T.J.; Rowarth, J.S. Legumes, Herbs or Grass for Lamb Performance? New Zealand Grassl. Assoc. 1996, 58, 49–52. Available online: https://researcharchive.lincoln.ac.nz/handle/10182/4557 (accessed on 1 March 2023). [CrossRef]
- Scales, G.H.; Knight, T.L.; Saville, D.J. Effect of herbage species and feeding level on internal parasites and production performance of grazing lambs. N. Z. J. Agric. Res. 1995, 38, 237–247. [Google Scholar] [CrossRef]
- Budny, A.; Kupczyńki, R.; Sobolewska, S.; Korczyński, M.; Zawadzki, W. Samolecznictwo i ziołolecznictwo w profilaktyce i leczeniu zwierząt gospodarskich. Acta Sci. Pol. Med. Vet. 2012, 11, 5–24. [Google Scholar]
- McCarthy, K.M.; McAloon, C.G.; Lynch, M.B.; Pierce, K.M.; Mulligan, F.J. Herb species inclusion in grazing swards for dairy cows—A systematic review and meta-analysis. J. Dairy Sci. 2020, 103, 1416–1430. [Google Scholar] [CrossRef] [PubMed]
- Dhamala, N.R.; Søegaard, K.; Eriksen, J. Competitive forbs in high-producing temporary grasslands with perennial ryegrass and red clover can increase plant diversity and herbage yield. Grassl. Sci. Eur. 2015, 20, 209–211. [Google Scholar]
- Høgh-Jensen, H.; Nielsen, B.; Thamsborg, S.M. Productivity and quality, competition and facilitation of chicory in ryegrass/legume-based pastures under various nitrogen supply levels. Eur. J. Agron. 2006, 24, 247–256. [Google Scholar] [CrossRef]
- Hennessy, D.; Delaby, L.; van den Pol-van Dasselaar, A.; Shalloo, L. Increasing Grazing in Dairy Cow Milk Production Systems in Europe. Sustainability 2020, 12, 2443. [Google Scholar] [CrossRef]
- Mee, J.F.; Boyle, L.A. Assessing whether dairy cow welfare is “better” in pasture-based than in confinement-based management systems. N. Z. Vet. J. 2020, 68, 168–177. [Google Scholar] [CrossRef]
- Arnott, G.; Ferris, C.; O’Connell, N. Review: Welfare of dairy cows in continuously housed and pasture-based production systems. Animals 2017, 11, 261–273. [Google Scholar] [CrossRef]
- Black, R.A.; Krawczel, P.D. A Case Study of Behaviour and Performance of Confined or Pastured Cows during the Dry Period. Animals 2016, 6, 41. [Google Scholar] [CrossRef]
- Charlton, G.L.; Rutter, S.M. The behaviour of housed dairy cattle with and without pasture access: A review. Appl. Anim. Behav. Sci. 2017, 192, 2–9. [Google Scholar] [CrossRef]
- Alvåsen, K.; Mörk, M.J.; Sandgren, C.H.; Thomsen, P.T.; Emanuelson, U. Herd-level risk factors associated with cow mortality in Swedish dairy herds. J. Dairy Sci. 2012, 95, 4352–4362. [Google Scholar] [CrossRef] [PubMed]
- Somers, J.G.C.J.; Schouten, W.G.P.; Frankena, K.; Noordhuizen-Stassen, E.N.; Metz, J.H.M. Development of claw traits and claw lesions in dairy cows kept on different floor systems. J. Dairy Sci. 2005, 88, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, B.; Schaub, J.; Friedli, K.; Hauser, R. Behaviour and leg injuries in dairy cows kept in cubicle systems with straw bedding or soft lying mats. Appl. Anim. Behav. Sci. 2000, 69, 189–197. [Google Scholar] [CrossRef]
- Van der Tol, P.P.J.; Metz, J.H.M.; Noordhuizen-Stassen, E.N.; Back, W.; Braam, C.R.; Weijs, W.A. Frictional forces required for unrestrained locomotion in dairy cattle. J. Dairy Sci. 2005, 88, 615–624. [Google Scholar] [CrossRef]
- Telezhenko, E.; Bergsten, C.; Magnusson, M. Swedish Holstein’ locomotion on five different solid floors. In Proceedings of the 13th International Symposium and 5th Conference on Lameness in Ruminants, Maribor, Slovenia, 11–15 February 2004; pp. 164–166. [Google Scholar]
- Chang-Fung-Martel, J.; Harrison, M.T.; Rawnsley, R.; Smith, A.P.; Meinke, H. The impact of extreme climatic events on pasture-based dairy systems: A review. Crop Pasture Sci. 2017, 68, 1158–1169. [Google Scholar] [CrossRef]
- Kumar, B.; Manuja, A.; Aich, P. Stress and its impact on farm animals. Front. Biosci. Elite 2012, 4, 1759–1767. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Chen, X.; Lu, Y.; Wang, D. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress—A review. Asian-Australas. J. Anim. Sci. 2019, 32, 1332–1339. [Google Scholar] [CrossRef]
- Garner, J.B.; Douglas, M.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; DiGiacomo, K.; Leury, B.J.; Hayes, B.J. Responses of dairy cows to short-term heat stress in controlled-climate chambers. Anim. Prod. Sci. 2017, 57, 1233. [Google Scholar] [CrossRef]
- Osei-Amponsah, R.; Dunshea, F.R.; Leury, B.J.; Cheng, L.; Cullen, B.; Joy, A.; Abhijith, A.; Zhang, M.H.; Chauhan, S.S. Heat Stress Impacts on Lactating Cows Grazing Australian Summer Pastures on an Automatic Robotic Dairy. Animals 2020, 10, 869. [Google Scholar] [CrossRef]
- Charlier, J.; Claerebout, E.; De Mûelenaere, E.; Vercruysse, J. Associations between dairy herd management factors and bulk tank milk antibody levels against Ostertagia ostertagi. Vet. Parasitol. 2005, 133, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; Tobin, J.; Fenelon, M.A.; O’Callaghan, T.F. The “grass-fed” milk story: Understanding the impact of pasture feeding on the composition and quality of bovine milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef]
- Shalloo, L.; Moran, B.; O’Brien, D. Define and verify pasture base—How does Irish “pasture fed” compare to the world. In Proceedings of the Grass-Fed Dairy Conference, Naas, Ireland, 25 October 2018; pp. 1–6. [Google Scholar]
- Lock, L.A.; Shingfield, K.J. Optimising Milk Composition. BSAP Occas. Public. 2004, 29, 107–188. [Google Scholar] [CrossRef]
- Månsson, H.L. Fatty Acids in Bovine Milk Fat. Food Nutr. Res. 2008, 52, 1821. [Google Scholar] [CrossRef]
- Liput, K.P.; Lepczyński, A.; Ogłuszka, M.; Nawrocka, A.; Poławska, E.; Grzesiak, A.; Ślaska, B.; Pareek, C.S.; Czarnik, U.; Pierzchała, M. Effects of Dietary n–3 and n–6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, F.T.; Sugrue, I.; Hill, C.; Ross, R.P.; Stanton, C. Nutritional Aspects of Raw Milk: A Beneficial or Hazardous Food Choice. In Raw Milk; Nero, L.A., de Carvalho, A.F., Eds.; Academic Press: Cambridge, MA, USA, 2019; Chapter 7; pp. 127–148. [Google Scholar]
- Bauman, E.D.; Griinari, J.M. Nutritional Regulation of Milk Fat Synthesis. Ann. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef]
- Palmquist, L.D.; Beaulieu, D.A.; Barbano, D.M. Feed and Animal Factors Influencing Milk Fat Composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, M.T.; Olsen, H.G.; Tafintseva, V.; Svendsen, M.; Kohler, A.; Kent, M.P.; Lien, S. Unravelling Genetic Variation underlying De Novo-Synthesis of Bovine Milk Fatty Acids. Sci. Rep. 2018, 8, 2179. [Google Scholar] [CrossRef] [PubMed]
- Moate, J.P.; Chalupa, W.; Boston, R.C.; Lean, I.J. Milk Fatty Acids. I. Variation in the Concentration of Individual Fatty Acids in Bovine Milk. J. Dairy Sci. 2007, 90, 4730–4739. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, F.T.; Faulkner, H.; McAulie, S.; O’Sullivan, M.G.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; Stanton, C.; Ross, R.P. Quality Characteristics, Chemical Composition, and Sensory Properties of Butter from Cows on Pasture Versus Indoor Feeding Systems. J. Dairy Sci. 2016, 99, 9441–9460. [Google Scholar] [CrossRef]
- Kučević, D.; Trivunović, S.; Bogdanović, V.; Čobanović, K.; Janković, D.; Stanojević, D. Composition of Raw Milk from Conventional and Organic Dairy Farming. Biotechnol. Anim. Husb. 2016, 32, 133–143. [Google Scholar] [CrossRef]
- Techeira, N.; Keel, K.; Garay, A.; Harte, F.; Mendoza, A.; Cartaya, A.; Farina, S.; López-Pedemonte, T. Milk fatty acid profile from grass feeding strategies on 2 Holstein genotypes: Implications for health and technological properties. JDS Commun. 2023, 4. [Google Scholar] [CrossRef]
- Benbrook, M.C.; Davis, D.R.; Heins, B.J.; Latif, M.A.; Leifert, C.; Peterman, L.; Butler, G.; Faergeman, O.; Abel-Caines, S.; Baranski, M. Enhancing the Fatty Acid Profile of Milk through Forage-Based Rations, with Nutrition Modeling of Diet Outcomes. Food Sci. Nutr. 2018, 6, 681–700. [Google Scholar] [CrossRef]
- Kuczyńska, B.A. Składniki Bioaktywne i Parametry Technologiczne Mleka Produkowanego w Gospodarstwach Ekologicznych i Konwencjonalnych; SGGW: Warszawa, Poland, 2011; pp. 1–120. [Google Scholar]
- O’Callaghan, F.T.; Mannion, D.T.; Hennessy, D.; McAuli_e, S.; O’Sullivan, M.G.; Leeuwendaal, N.; Beresford, T.P.; Dillon, P.; Kilcawley, K.N.; Sheehan, J.J.; et al. Effect of Pasture Versus Indoor Feeding Systems on Quality Characteristics, Nutritional Composition, and Sensory and Volatile Properties of Full-Fat Cheddar Cheese. J. Dairy Sci. 2017, 100, 6053–6073. [Google Scholar] [CrossRef]
- Or-Rashid, M.M.; Odongo, N.E.; Subedi, B.; Karki, P.; McBride, B.W. Fatty Acid Composition of Yak (Bos Grunniens) Cheese Including Conjugated Linoleic Acid and Trans-18:1 Fatty Acids. J. Agric. Food Chem. 2008, 56, 1654–1660. [Google Scholar] [CrossRef] [PubMed]
- Segato, S.; Galaverna, G.; Contiero, B.; Berzaghi, P.; Caligiani, A.; Marseglia, A.; Cozzi, G. Identification of Lipid Biomarkers to Discriminate between the Different Production Systems for Asiago PDO Cheese. J. Agric. Food Chem. 2017, 65, 9887–9892. [Google Scholar] [CrossRef]
- Prema, D.; Pilfold, J.L.; Krauchi, J.; Church, J.S.; Donkor, K.K.; Cinel, B. Rapid Determination of Total Conjugated Linoleic Acid Content in Select Canadian Cheeses by 1 h Nmr Spectroscopy. J. Agric. Food Chem. 2013, 61, 9915–9921. [Google Scholar] [CrossRef]
- Chion, A.R.; Tabacco, E.; Giaccone, D.; Peiretti, P.G.; Battelli, G.; Borreani, G. Variation of Fatty Acid and Terpene Profiles in Mountain Milk and Toma Piemontese Cheese as Affected by Diet Composition in Different Seasons. Food Chem. 2010, 121, 393–399. [Google Scholar] [CrossRef]
- Couvreur, S.; Hurtaud, C.; Lopez, C.; Delaby, L.; Peyraud, J.L. The Linear Relationship between the Proportion of Fresh Grass in the Cow Diet, Milk Fatty Acid Composition, and Butter Properties. J. Dairy Sci. 2006, 89, 1956–1969. [Google Scholar] [CrossRef] [PubMed]
- Mallia, S.; Piccinali, P.; Rehberger, B.; Badertscher, R.; Escher, F.; Schlichtherle-Cerny, H. Determination of Storage Stability of Butter Enriched with Unsaturated Fatty Acids/Conjugated Linoleic Acids (UFA/CLA) Using Instrumental and Sensory Methods. Int. Dairy J. 2008, 18, 983–993. [Google Scholar] [CrossRef]
- Villeneuve, P.M.; Lebeuf, Y.; Gervais, R.; Tremblay, G.F.; Vuillemard, J.C.; Fortin, J.; Chouinard, P.Y. Milk Volatile Organic Compounds and Fatty Acid Profile in Cows Fed Timothy as Hay, Pasture, or Silage. J. Dairy Sci. 2013, 96, 7181–7194. [Google Scholar] [CrossRef]
- Bargo, F.; Delahoy, J.E.; Schroeder, G.F.; Baumgard, L.H.; Muller, L.D. Supplementing Total Mixed Rations with Pasture Increase the Content of Conjugated Linoleic Acid in Milk. Anim. Feed Sci. Technol. 2006, 131, 226–240. [Google Scholar] [CrossRef]
- Faulkner, H.; O’Callaghan, T.F.; McAuliffe, S.; Hennessy, D.; Stanton, C.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Effect of different forage types on the volatile and sensory properties of bovine milk. J. Dairy Sci. 2018, 101, 1034–1047. [Google Scholar] [CrossRef]
- Esposito, G.; Masucci, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; di Francia, A. Fatty Acid and Sensory Profiles of Caciocavallo Cheese as Affected by Management System. J. Dairy Sci. 2014, 97, 1918–1928. [Google Scholar] [CrossRef] [PubMed]
- Coppa, M.; Ferlay, A.; Monsallier, F.; Verdier-Metz, I.; Pradel, P.; Didienne, R.; Farruggia, A.; Montel, M.C.; Martin, B. Milk Fatty Acid Composition and Cheese Texture and Appearance from Cows Fed Hay or Different Grazing Systems on Upland Pastures. J. Dairy Sci. 2011, 94, 1132–1145. [Google Scholar] [CrossRef] [PubMed]
- Radkowska, I.; Herbut, E. The Effect of Housing System of Simmental Cows on Processing Suitability of Milk and Quality of Dairy Products. Anim. Sci. Pap. Rep. 2017, 35, 147–158. [Google Scholar]
- Mallia, S.; Escher, F.; Dubois, S.; Schieberle, P.; Schlichtherle-Cerny, H. Characterization and Quantification of Odor-Active Compounds in Unsaturated Fatty Acid/Conjugated Linoleic Acid (UFA/CLA)-Enriched Butter and in Conventional Butter during Storage and Induced Oxidation. J. Agric. Food Chem. 2009, 57, 7464–7472. [Google Scholar] [CrossRef]
- Ryhänen, L.E.; Tallavaara, K.; Griinari, J.M.; Jaakkola, S.; Mantere-Alhonen, S.; Shingfield, K.J. Production of Conjugated Linoleic Acid Enriched Milk and Dairy Products from Cows Receiving Grass Silage Supplemented with a Cereal-Based Concentrate Containing Rapeseed Oil. Int. Dairy J. 2005, 15, 207–217. [Google Scholar] [CrossRef]
- Silva, G.C.C.; Silva, S.P.M.; Prates, J.A.M.; Bessa, R.J.B.; Rosa, H.J.D.; Rego, O.A. Physicochemical Traits and Sensory Quality of Commercial Butter Produced in the Azores. Int. Dairy J. 2019, 88, 10–17. [Google Scholar] [CrossRef]
- Steinshamn, H.; Thuen, E.; Brenøe, U.T. Clover species in grass-clover silages affects milk fatty acid composition. J. Anim. Feed Sci. 2007, 16 (Suppl. S1), 65–69. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Theobald, V.J.; Gordon, N.; Leyland, M.; Tweed, J.K.S.; Fychan, R.; Scollan, N.D. The effect of high polyphenol oxidase grass silage on metabolism of polyunsaturated fatty acids and nitrogen across the rumen of beef steers. J. Anim. Sci. 2014, 92, 5076–5087. [Google Scholar] [CrossRef]
- Steijns, J. Milk Ingredients as Nutraceuticals. Int. J. Dairy Technol. 2001, 54, 81–88. [Google Scholar] [CrossRef]
- Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals 2016, 9, 61. [Google Scholar] [CrossRef]
- Haque, E.; Chand, R. Antihypertensive and Antimicrobial Bioactive Peptides from Milk Proteins. Eur. Food Res. Technol. 2008, 227, 7–15. [Google Scholar] [CrossRef]
- Guha, S.; Sharma, H.; Deshwal, G.K.; Rao, P.S. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. Food Prod. Process. Nutri. 2021, 3, 1–21. [Google Scholar] [CrossRef]
- Mills, S.; Ross, R.P.; Hill, C.; Fitzgerald, G.F.; Stanton, C. Milk Intelligence: Mining Milk for Bioactive Substances Associated with Human Health. Int. Dairy J. 2011, 21, 377–401. [Google Scholar] [CrossRef]
- Bhat, F.Z.; Bhat, H. Milk and Dairy Products as Functional Foods: A Review. Int. J. Dairy Sci. 2011, 6, 1–12. [Google Scholar] [CrossRef]
- Ali, M.A.; Kamal, M.M.; Rahman, M.H.; Siddiqui, M.N.; Haque, M.A.; Saha, K.K.; Rahman, M.A. Functional dairy products as a source of bioactive peptides and probiotics: Current trends and future prospective. J. Food Sci. Technol. 2022, 59, 1263–1279. [Google Scholar] [CrossRef] [PubMed]
- Flom, J.D.; Sicherer, S.H. Epidemiology of Cow’s Milk Allergy. Nutrients 2019, 11, 1051. [Google Scholar] [CrossRef]
- Barłowska, J.; Litwińczuk, Z.; Brodziak, A.; Chabuz, W. Effect of the production season on nutritional value and technological suitability of milk obtained from intensive (TMR) and traditional feeding system of cows. J. Microbiol. Biotechnol. Food Sci. 2021, 1, 1205–1220. Available online: https://office2.jmbfs.org/index.php/JMBFS/article/view/7231 (accessed on 12 December 2022).
- De La Torre, S.; Vicente, F.; Royo, L. Dairy cows eating grass produce milk with a higher proportion of fat-soluble antioxidants. In Sustainable meat and milk production from grasslands. In Proceedings of the 27th General Meeting of the European Grassland Federation, Cork, Ireland, 17–21 June 2018; pp. 443–445. [Google Scholar]
- Mehta, B.M. Chemical composition of milk and milk products. In Handbook of Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2015; pp. 511–553. [Google Scholar]
- Clarke, H.J.; Griffin, C.; Rai, D.K.; O’Callaghan, T.F.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Dietary compounds influencing the sensorial, volatile and phytochemical properties of bovine milk. Molecules 2019, 25, 26. [Google Scholar] [CrossRef] [PubMed]
- Gulati, A.; Galvin, N.; Lewis, E.; Hennessy, D.; O’Donovan, M.; McManus, J.J.; Fenelon, M.A.; Guinee, T.P. Outdoor grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on gross composition and mineral content of milk during lactation. J. Dairy Sci. 2018, 101, 2710–2723. [Google Scholar] [CrossRef] [PubMed]
- Horn, J.; Isselstein, J. How do we feed grazing livestock in the future? A case for knowledge-driven grazing systems. Grass Forage Sci. 2022, 77, 153–166. [Google Scholar] [CrossRef]
- Trotter, M.G.; Lamb, D.W.; Donald, G.E.; Schneider, D.A. Evaluating an active optical sensor for quantifying and mapping green herbage mass and growth in a perennial grass pasture. Crop Pasture Sci. 2010, 61, 389–398. [Google Scholar] [CrossRef]
- Lopatin, J.; Fassnacht, F.E.; Kattenborn, T.; Schmidtlein, S. Mapping plant species in mixed grassland communities using close range imaging spectroscopy. Remote Sens. Environ. 2017, 201, 12–23. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Z. Assessing of urban vegetation biomass in combination with LiDAR and high-resolution remote sensing images. Int. J. Remote Sens. 2021, 42, 964–985. [Google Scholar] [CrossRef]
- Grüner, E.; Astor, T.; Wachendorf, M. Prediction of biomass and N fixation of legume–grass mixtures using sensor fusion. Front. Plant Sci. 2021, 11, 603921. [Google Scholar] [CrossRef]
- Rivas, A.; Chamoso, P.; González-Briones, A.; Corchado, J.M. Detection of cattle using drones and convolutional neural networks. Sensors 2018, 18, 2048. [Google Scholar] [CrossRef]
- Gargiulo, J.I.; Eastwood, C.R.; Garcia, S.C.; Lyons, N.A. Dairy farmers with larger herd sizes adopt more precision dairy technologies. J. Dairy Sci. 2018, 101, 5466–5473. [Google Scholar] [CrossRef]
- Schieltz, J.M.; Okanga, S.; Allan, B.F.; Rubenstein, D.I. GPS tracking cattle as a monitoring tool for conservation and management. Afr. J. Range Forage Sci. 2017, 34, 173–177. [Google Scholar] [CrossRef]
- Harris, N.R.; Johnson, D.E.; McDougald, N.K.; George, M.R. Social associations and dominance of individuals in small herds of cattle. Rangel. Ecol. Manag. 2007, 60, 339–349. [Google Scholar] [CrossRef]
- Aaser, M.F.; Staahltoft, S.K.; Korsgaard, A.H.; Trige-Esbensen, A.; Alstrup, A.K.O.; Sonne, C.; Pertoldi, C.; Bruhn, D.; Frikke, J.; Linder, A.C. Is virtual fencing an effective way of enclosing cattle? Personality, herd behaviour and welfare. Animals 2022, 12, 842. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, C.; Ayre, M.; Nettle, R.; Rue, B.D. Making sense in the cloud: Farm advisory services in a smart farming future. NJAS—Wagen. J. Life SC 2019, 90, 100298. [Google Scholar] [CrossRef]
- Rogers, E. Diffusion of Innovations, 5th ed.; Free Press: Florence, MA, USA, 2003. [Google Scholar]
- Leroy, G.; Hoffmann, I.; From, T.; Hiemstra, S.J.; Gandini, G. Perception of livestock ecosystem services in grazing areas. Animal 2018, 12, 2627–2638. [Google Scholar] [CrossRef] [PubMed]
- Franke, J.; Keuck, V.; Siegert, F. Assessment of grassland use intensity by remote sensing to support conservation schemes. J. Nat. Conserv. 2012, 20, 125–134. [Google Scholar] [CrossRef]
Advantages | Disadvantages | |
---|---|---|
Environment | Lower energy consumption Less CO2, ammonia, and methane emission | More N losses (nitrate leaching denitrification, NO emissions) |
Soil | Soil quality improvement (Mob grazing and AMP) | Increase in soil compaction |
Biodiversity | Rational grazing increases biodiversity | Overgrazing reduces biodiversity |
Sward quality and availability | Grazing reduces the need for sward renewal | Variability in forage availability and quality during the grazing season. Relatively large fluctuations in the composition of the ration |
Animal health and welfare | Lower risk of various diseases Possibility of natural behavior | Higher risk of infection with internal parasites The risk of stress caused by weather factors |
Milk quality | Better milk and dairy products quality | More variable milk quality due to the variability of grass supply and quality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel, B.; Zielewicz, W.; Staniak, M. Challenges of Pasture Feeding Systems—Opportunities and Constraints. Agriculture 2023, 13, 974. https://doi.org/10.3390/agriculture13050974
Wróbel B, Zielewicz W, Staniak M. Challenges of Pasture Feeding Systems—Opportunities and Constraints. Agriculture. 2023; 13(5):974. https://doi.org/10.3390/agriculture13050974
Chicago/Turabian StyleWróbel, Barbara, Waldemar Zielewicz, and Mariola Staniak. 2023. "Challenges of Pasture Feeding Systems—Opportunities and Constraints" Agriculture 13, no. 5: 974. https://doi.org/10.3390/agriculture13050974
APA StyleWróbel, B., Zielewicz, W., & Staniak, M. (2023). Challenges of Pasture Feeding Systems—Opportunities and Constraints. Agriculture, 13(5), 974. https://doi.org/10.3390/agriculture13050974