Applications of Environmental Nanotechnologies in Remediation, Wastewater Treatment, Drinking Water Treatment, and Agriculture
Abstract
:1. Introduction
1.1. Historic Development and Applications of Nanotechnology
1.2. Production Rates and Classification of NMs
1.3. Synthesis of NMs or How to Make a Big Thing Small
2. Use of Nanotechnologies in Environmental Remediation
2.1. Conventional Environmental Remediation Approaches
2.2. Environmental Remediation Applying NTs
3. Application of NTs in Wastewater Treatment
3.1. Adsorption of Heavy Metals as Common Wastewater Pollution
Target | Adsorbent Material | qmax (mg g−1) | Dosage (g L−1) | pH | Contact Time | Ref. |
---|---|---|---|---|---|---|
Cr6+ | GO-HBP-NH2-TEPA | 300.9 | 0.2 | 2.0 | 360 min | [66] |
n-GO@HTCS biocomposite | 43.87 | 2.0 | 3.0 | 50 min | [67] | |
Nitrogen doped magnetic carbon nanotubes | 970.9 | 2.5 | 1.0 | <10 min | [68] | |
Magnetic iron oxide nanoparticles (m-NIOB) | 47.62 | 5.3 | 5.0 | 180 min | [83] | |
Ni@N-K-C-900 | 824.4 | 1.0 | 2.0 | - | [84] | |
Aluminium hydroxide nanoparticles | 120.0 | 1.0 | 5.0 | 60 min | [85] | |
FeS/chitosan/biochar composite | 103.9 | 0.2 | 2.0 | 360 min | [86] | |
TA-nano-FeS | 381.0 | 0.1 | 4.0 | 120 min | [87] | |
As5+ | Biochar-loaded Ce3+-enriched ultra-fine ceria NPs | 219.8 | 50 | 5.0 | 24 h | [70] |
Nano-scale polyaniline/Fe0 composite | 227.0 | 0.1 | 7.0 | 60 min | [73] | |
γFe2O3 NP encapsulated microporous silica | 248 | 0.4 | 2–6 | 24 h | [88] | |
Iron oxide–graphene oxide (GO) nanocomposites | 113.0 | 0.8 | - | 15 min | [89] | |
(S-nZVI@ZSM-5) composite | 161.7 | 1.0 | 4.0 | 25 h | [90] | |
Zr-MnO2@reduced graphene oxide nanocomposite | 201.1 | 1.0 | 4.0 | 25 min | [91] | |
Cd2+ | NiO nanoparticles | 625.0 | 0.5 | 6.0 | 10 min | [74] |
MWCNTs-KOH@NiNPs | 415.3 | 0.03 | 5.5 | 30 min | [77] | |
Oxidised starch nanoparticles | 151.7 | 0.05 | - | 90 min | [92] | |
Sulfonate hydroxyapatite NPs—15BDS-HAp | 457 | 2.0 | 5.0 | 180 min | [93] | |
Pb2+ | NiO nanoparticles | 909 | 0.5 | 6.0 | 120 min | [74] |
DTPA chitosan-coated magnetic silica NPs | 268.0 | 1.0 | 6.0 | 90 min | [75] | |
MWCNTs-KOH@NiNPs | 480.0 | 0.03 | 5.5 | 30 min | [77] | |
Lanthanum sulphide NP decorated over magnetic graphene oxide | 123.5 | 1.0 | 5.0 | 40 min | [78] | |
Oxidised starch nanoparticles | 182.2 | 0.05 | - | 90 min | [92] | |
Cu2+ | Activated carbon/magnetite nanoparticles | 23.6 | 10 | - | 24 h | [94] |
Fe3O4-MnO2-EDTA magnetic nanoparticles | 105.8 | 0.2 | 6.0 | 60 min | [95] | |
Graphene oxide sheets with magnetite NPs | 16.7 | 1.0 | 7.0 | 24 h | [96] | |
Functionalised graphene oxide nanoparticles | 357.1 | - | 6.0–7.0 | 60 min | [97] | |
Hydroxyapatite nanoparticles | 70.9 | 1.25 | - | 120 min | [98] |
3.2. Adsorption of Persistent Substances from Wastewater Pollution via NPs
3.3. NPs for the Advanced Photocatalytic Degradation of Wastewater Pollutants
Treated Compound | Photocatalyst | Bandgap (eV) | Cdye (mg L−1) | Ccat (g L−1) | Light Source | Time (min) | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|---|---|
Direct | Bentonite/TiO2/Ag0.25 | 3.26 | 10 | 0.6 | UV | 120 | 77 | [114] |
Red 80 | NiO/CuO composite | 3.80 | 60 | 0.05 | Sun | 60 | 67 | [121] |
Co3O4 | 1.85–2.10 | 10 | 0.3 | Sun | 30 | 78 | [122] | |
Methylene | Bentonite/TiO2/Ag0.25 | 3.26 | 10 | 0.6 | UV | 120 | 100 | [114] |
blue | rGO/TiO2/CdO/ZnO/Ag | 2.58 | 96 | 50 | UV | 15 | 91 | [115] |
B-TiO2/CoTiO3 | 2.32/2.40 | 5 | 1 | Vis | 30 | 98 | [117] | |
Fe3O4/SiO2/TiO2 | - | 30 | 0.25 | UV | 300 | 100 | [123] | |
1%Ag-ZnO composite | 3.02 | 10 | 0.1 | Sun | 30 | 98.5 | [124] | |
Methyl | B-TiO2/CoTiO3 | 2.32/2.40 | 5 | 1 | Vis | 60 | 99 | [117] |
Orange | La0.7Sr1.3CoO4 Ruddlesden- popper nanoparticles | 2.50 | 20 | 5 | UV | 75 | 94 | [117] |
1%Ag-ZnO composite | 3.02 | 10 | 0.1 | Sun | 30 | 92 | [124] | |
30%TiO2/0.3HZSM-5 | - | 10 | 2 | UV | 150 | 99.5 | [125] | |
Rhodamine | B-TiO2/CoTiO3 | 2.32/2.40 | 5 | 1 | Vis | 20 | 99 | [117] |
B | 60%TiO2NP@SiO2 | 3.13 | 200 | 1 | UV | 180 | 70 | [116] |
60%TiO2NP@SiO2 | 3.13 | 200 | 1 | Vis | 180 | 60 | [116] | |
Ag3PO4 | 2.51 | 150 | 0.3 | Vis | 180 | 96 | [126] | |
G-C3N4/Ag@CoWO4 | 2.30 | 100 | 0.1 | Sun | 120 | 97 | [127] | |
Phenol | 10%TiO2NP@SiO2 | 3.02 | 200 | 1 | UV | 180 | 50 | [116] |
10%TiO2NP@SiO2 | 3.02 | 200 | 1 | Vis | 180 | 35 | [116] | |
TiO2 | 3.20 | 20 | 1 | UV | 450 | 90 | [128] | |
Mn0.6Zn0.4Fe2O4@Zn1−xMnxS | 2.57 | 25 | 1 | Vis | 180 | 99 | [129] | |
Murexide | Co NP | - | 50 | 1.0 | Vis | 30 | 43.6 | [118] |
Eriochrome | Co3O4 NP | - | 50 | 1.0 | Vis | 30 | 39.4 | [118] |
black-T | Potassium zinc hexacyanoferrate nanocubes | - | 10 | 1.5 | UV–Vis | 120 | 76 | [130] |
Ho(OH)3 NP | 4.14 | 1 | 0.04 | UV | 100 | 80 | [131] | |
Nd2Zr2O7 NP | 3.30 | 3 | 0.12 | UV | 50 | 84 | [132] | |
Malachite green | Potassium zinc hexacyanoferrate nanocubes | - | 10 | 1.5 | UV–Vis | 120 | 94 | [130] |
Chitosan/Ce–ZnO composites | 2.5 | 5 | 0.05 | Vis | 90 | 83 | [133] | |
GP-ZnO-NP | 3.41 | 10 | 0.2 | UV | 180 | 89 | [134] | |
Diatomite@Ni/NiO | 1.71 | 25 | 0.2 | UV | 150 | 100 | [135] |
3.4. Membrane Filtration—Nanofiltration
4. Applications in Drinking Water Production
4.1. Advanced Disinfection through the Application of NPs
4.2. Removal of Heavy Metals from Drinking Water by NTs
4.3. Removal of Organic Compounds from Drinking Water by NTs
5. When Agriculture Meets with NTs
5.1. Nanofertilisers in Agriculture
5.2. Nanopesticides and Nanoherbicides in Agriculture
5.3. Nano(bio)sensors for Precision Agriculture
6. Conclusions
Author Contributions
Funding
Institutional Reviewer Broad Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharyya, D.; Singh, S.; Satnalika, N.; Khandelwal, A.; Jeon, S.H. Nanotechnology, Big things from a Tiny World: A review. Int. J. u- e-Serv. Sci. Technol. 2009, 2, 28–29. [Google Scholar]
- Tratnyek, P.G.; Johnson, R.L. Nanotechnologies for environmental cleanup. Nano Today 2006, 1, 44–48. [Google Scholar] [CrossRef]
- Sun, H. Grand Challenges in Environmental Nanotechnology. Front. Nanotechnol. 2019, 1, 2. [Google Scholar] [CrossRef]
- Franco, C.A.; Zabala, R.; Cortés, F.B. Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. J. Pet. Sci. Eng. 2017, 157, 39–55. [Google Scholar] [CrossRef]
- Saleh, T.A. Nanomaterials: Classification, properties, and environmental toxicities. Environ. Technol. Innov. 2020, 20, 101067. [Google Scholar] [CrossRef]
- Gregorczyk, K.; Knez, M. Hybrid nanomaterials through molecular and atomic layer deposition: Top down, bottom up, and in-between approaches to new materials. Prog. Mater. Sci. 2016, 75, 1–37. [Google Scholar] [CrossRef]
- Feynman, R. There’s plenty of room at the bottom (reprint from speech given at annual meeting of the American Physical Society). Eng. Sci. 1960, 23, 22–36. [Google Scholar]
- Calipinar, H.; Ulas, D. Development of Nanotechnology in the World and Nanotechnology Standards in Turkey. Procedia Comput. Sci. 2019, 158, 1011–1018. [Google Scholar] [CrossRef]
- Glenn, J.C. Nanotechnology: Future military environmental health considerations. Technol. Forecast. Soc. Chang. 2006, 73, 128–137. [Google Scholar] [CrossRef]
- Drexler, E.K. Engines of Creation: The Coming Era of Nanotechnology; Anchor Books; Doubleday: New York, NY, USA, 1986; ISBN 0-385-19973-2. [Google Scholar]
- Kargozar, S.; Mozafari, M. Nanotechnology and Nanomedicine: Start small, think big. Mater. Today Proc. 2018, 5, 15492–15500. [Google Scholar] [CrossRef]
- Binnig, G.; Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 1983, 126, 236–244. [Google Scholar] [CrossRef]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56, 930–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaming, D.; Remita, H. Nanotechnology: From the ancient time to nowadays. Found. Chem. 2015, 17, 187–205. [Google Scholar] [CrossRef]
- Fairbrother, A.; Fairbrother, J.R. Are environmental regulations keeping up with innovation? A case study of the nanotechnology industry. Ecotoxicol. Environ. Saf. 2009, 72, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; He, J.; Song, K.; Guo, J.; Zhou, X.; Liu, S. Plant-Extract-Mediated Synthesis of Metal Nanoparticles. J. Chem. 2021, 2021, 6562687. [Google Scholar] [CrossRef]
- Mueller, N.C.; Nowack, B. Exposure Modeling of Engineered Nanoparticles in the Environment. Environ. Sci. Technol. 2008, 42, 4447–4453. [Google Scholar] [CrossRef] [PubMed]
- Naghdi, M.; Metahni, S.; Ouarda, Y.; Brar, S.K.; Das, R.K.; Cledon, M. Instrumental approach toward understanding nano-pollutants. Nanotechnol. Environ. Eng. 2017, 2, 3. [Google Scholar] [CrossRef]
- Sousa, V.S.; Teixeira, M.R. Metal-based engineered nanoparticles in the drinking water treatment systems: A critical review. Sci. Total Environ. 2020, 707, 136077. [Google Scholar] [CrossRef]
- Giese, B.; Klaessig, F.; Park, B.; Kaegi, R.; Steinfeldt, M.; Wigger, H.; Von Gleich, A.; Gottschalk, F. Risks, Release and Concentrations of Engineered Nanomaterial in the Environment. Sci. Rep. 2018, 8, 1565. [Google Scholar] [CrossRef]
- Hansen, S.F.; Baun, A.; Alstrup-Jensen, K. NanoRiskCat—A Conceptual Decision Support Tool for Nanomaterials; Danish Environmental Protection Agency: København, Denmark, 2011; pp. 1–86. [Google Scholar]
- Sheikholeslami, M.; Ganji, D. Nanofluid convective heat transfer using semi analytical and numerical approaches: A review. J. Taiwan Inst. Chem. Eng. 2016, 65, 43–77. [Google Scholar] [CrossRef]
- Schöbel, J.; Burgard, M.; Hils, C.; Dersch, R.; Dulle, M.; Volk, K.; Karg, M.; Greiner, A.; Schmalz, H. Bottom-Up Meets Top-Down: Patchy Hybrid Nonwovens as an Efficient Catalysis Platform. Angew. Chem. Int. Ed. 2016, 56, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, G.; Angulo, Y.; Debut, A.; Cumbal, L.H. Synthesis and Characterization of Silver Nanoparticles Prepared with Carrasquilla Fruit Extract (Berberis hallii) and Evaluation of Its Photocatalytic Activity. Catalysts 2021, 11, 1195. [Google Scholar] [CrossRef]
- Kumar, B. Green Synthesis of Gold, Silver, and Iron Nanoparticles for the Degradation of Organic Pollutants in Wastewater. J. Compos. Sci. 2021, 5, 219. [Google Scholar] [CrossRef]
- Edison, T.N.J.I.; Sethuraman, M. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 2012, 47, 1351–1357. [Google Scholar] [CrossRef]
- Singh, P.; Kim, Y.-J.; Zhang, D.; Yang, D.-C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar] [PubMed]
- Mishra, S.; Pradhan, J.; Singh, R.; Kumar, B. Phytosynthesis of Iron Oxide Nanoparticles using Juncus inflexus Shoot Extract. Biointerface Res. Appl. Chem. 2021, 12, 3790–3799. [Google Scholar] [CrossRef]
- Ilyas, M.; Waris, A.; Khan, A.U.; Zamel, D.; Yar, L.; Baset, A.; Muhaymin, A.; Khan, S.; Ali, A.; Ahmad, A. Biological synthesis of titanium dioxide nanoparticles from plants and microorganisms and their potential biomedical applications. Inorg. Chem. Commun. 2021, 133, 108968. [Google Scholar] [CrossRef]
- Raliya, R.; Biswas, P.; Tarafdar, J. TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol. Rep. 2015, 5, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Jayaseelan, C.; Rahuman, A.A.; Roopan, S.M.; Kirthi, A.V.; Venkatesan, J.; Kim, S.-K.; Iyappan, M.; Siva, C. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 107, 82–89. [Google Scholar] [CrossRef]
- Chen, G.; Li, M.; Li, F.; Sun, S.; Xia, D. Protein-Mediated Synthesis of Nanostructured Titania with Different Polymorphs at Room Temperature. Adv. Mater. 2010, 22, 1258–1262. [Google Scholar] [CrossRef] [PubMed]
- Karn, B.; Kuiken, T.; Otto, M. Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks. Environ. Health Perspect. 2009, 117, 1813–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, T.; Sheng, Y.; Meng, Y.; Sun, J. Multistage remediation of heavy metal contaminated river sediments in a mining region based on particle size. Chemosphere 2019, 225, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Meng, F.; Du, Y.; Tan, Y. Distribution, speciation, and ecological risk assessment of heavy metals in surface sediments of Jiaozhou Bay, China. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1253–1267. [Google Scholar] [CrossRef]
- Villanueva, U.; Raposo, J.C.; Madariaga, J.M. A new methodological approach to assess the mobility of As, Cd, Co, Cr, Cu, Fe, Ni and Pb in river sediments. Microchem. J. 2013, 106, 107–120. [Google Scholar] [CrossRef]
- Mondal, A.; Dubey, B.K.; Arora, M.; Mumford, K. Porous media transport of iron nanoparticles for site remediation application: A review of lab scale column study, transport modelling and field-scale application. J. Hazard. Mater. 2021, 403, 123443. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Ye, C. Resolving soil pollution in China. Nature 2014, 505, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, B.; Zeng, G.; Gong, J.; Liang, J.; Xu, P.; Liu, Z.; Zhang, Y.; Zhang, C.; Cheng, M.; Liu, Y.; et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ. Int. 2017, 105, 43–55. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, W.; Cai, Z.; Han, B.; Qian, T.; Zhao, D. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 2016, 100, 245–266. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Zhao, D.; Paul, C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res. 2010, 44, 2360–2370. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.; Saha, S. Microencapsulated Zero Valent Iron NanoParticles in Polylactic acid matrix for in situ remediation of contaminated water. J. Environ. Chem. Eng. 2020, 8, 103909. [Google Scholar] [CrossRef]
- Karthick, A.; Roy, B.; Chattopadhyay, P. Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils. J. Environ. Manag. 2019, 240, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Baragano, D.; Alonso, J.; Gallego, J.R.; Lobo, M.C.; Gil-Diaz, M. Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Chemosphere 2020, 238, 124624. [Google Scholar] [CrossRef] [PubMed]
- Kheshtzar, R.; Berenjian, A.; Ganji, N.; Taghizadeh, S.-M.; Maleki, M.; Taghizadeh, S.; Ghasemi, Y.; Ebrahiminezhad, A. Response surface methodology and reaction optimization to product zero-valent iron nanoparticles for organic pollutant remediation. Biocatal. Agric. Biotechnol. 2019, 21, 101329. [Google Scholar] [CrossRef]
- Rezaei, F.; Vione, D. Effect of pH on Zero Valent Iron Performance in Heterogeneous Fenton and Fenton-Like Processes: A Review. Molecules 2018, 23, 3127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna, M.; Gastone, F.; Tosco, T.; Sethi, R.; Velimirovic, M.; Gemoets, J.; Muyshondt, R.; Sapion, H.; Klaas, N.; Bastiaens, L. Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation. J. Contam. Hydrol. 2015, 181, 46–58. [Google Scholar] [CrossRef]
- Bennett, P.; He, F.; Zhao, D.; Aiken, B.; Feldman, L. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. J. Contam. Hydrol. 2010, 116, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Puls, R.W.; Krug, T.A.; Watling, M.T.; O’Hara, S.K.; Quinn, J.W.; Ruiz, N.E. Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years. Water Res. 2013, 47, 4095–4106. [Google Scholar] [CrossRef]
- Calderon, B.; Fullana, A. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Res. 2015, 83, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Song, L.; Song, H.; Hui, K.; Lin, Z.; Wang, Q.; Xuan, L.; Wang, Z.; Gao, W. Remediation of copper contaminated sediments by granular activated carbon-supported titanium dioxide nanoparticles: Mechanism study and effect on enzyme activities. Sci. Total Environ. 2020, 741, 139962. [Google Scholar] [CrossRef] [PubMed]
- MiarAlipour, S.; Friedmann, D.; Scott, J.; Amal, R. TiO2/porous adsorbents: Recent advances and novel applications. J. Hazard. Mater. 2018, 341, 404–423. [Google Scholar] [CrossRef] [PubMed]
- Sathya, S.; Ragul, V.; Veeraraghavan, V.P.; Singh, L.; Ahamed, M.I.N. An in vitro study on hexavalent chromium [Cr(VI)] remediation using iron oxide nanoparticles based beads. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100333. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Wang, J.; Wang, X.; Liu, B.; Wang, Y. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. J. Environ. Manag. 2019, 231, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.-H.; Sheu, Y.-T.; Tsang, D.; Sun, Y.-J.; Kao, C.-M. Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation. Chemosphere 2020, 256, 127158. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Bianco, C.; Tosco, T.; Tiraferri, A.; Sethi, R. Synthesis of eco-compatible bimetallic silver/iron nanoparticles for water remediation and reactivity assessment on bromophenol blue. J. Clean. Prod. 2019, 211, 1367–1374. [Google Scholar] [CrossRef]
- Singh, H.; Bhardwaj, N.; Arya, S.K.; Khatri, M. Environmental impacts of oil spills and their remediation by magnetic nanomaterials. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100305. [Google Scholar] [CrossRef]
- Dave, D.; Ghaly, A. Remediation technologies for marine oil spills: A critical review and comparative analysis. Am. J. Environ. Sci. 2011, 7, 423–440. [Google Scholar] [CrossRef] [Green Version]
- Doshi, B.; Sillanpää, M.; Kalliola, S. A review of bio-based materials for oil spill treatment. Water Res. 2018, 135, 262–277. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Qin, C.; Chen, M.; Lin, S. Nanotechnology in soil remediation—Applications vs. implications. Ecotoxicol. Environ. Saf. 2020, 201, 110815. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Babel, S.; Kurniawan, T.A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 2004, 54, 951–967. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Hao, L.; Wang, Y.; Li, X.; Chen, Y.; Li, W.; Jiang, L. The selective heavy metal ions adsorption of zinc oxide nanoparticles from dental wastewater. Chem. Phys. 2020, 534, 110750. [Google Scholar] [CrossRef]
- Kong, Q.; Wei, J.; Hu, Y.; Wei, C. Fabrication of terminal amino hyperbranched polymer modified graphene oxide and its prominent adsorption performance towards Cr(VI). J. Hazard. Mater. 2019, 363, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, S.; Manivasakan, P.; Jeyaprabha, C.; Meenakshi, S.; Viswanathan, N. Fabrication of nano-graphene oxide assisted hydrotalcite/chitosan biocomposite: An efficient adsorbent for chromium removal from water. Int. J. Biol. Macromol. 2019, 132, 1068–1078. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Cao, Y.; Qin, B.; Zhong, G.; Zhang, J.; Yu, H.; Wang, H.; Peng, F. Highly efficient and acid-corrosion resistant nitrogen doped magnetic carbon nanotubes for the hexavalent chromium removal with subsequent reutilization. Chem. Eng. J. 2019, 361, 547–558. [Google Scholar] [CrossRef]
- Shan, C.; Liu, Y.; Huang, Y.; Pan, B. Non-radical pathway dominated catalytic oxidation of As(III) with stoichiometric H2O2 over nanoceria. Environ. Int. 2019, 124, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, X.; Yan, J.; Wang, T.; Xie, X.; Yang, S. Efficient removal arsenate from water by biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles through adsorption-precipitation. Sci. Total Environ. 2021, 794, 148691. [Google Scholar] [CrossRef]
- Niazi, N.K.; Bibi, I.; Shahid, M.; Ok, Y.S.; Burton, E.; Wang, H.; Shaheen, S.; Rinklebe, J.; Lüttge, A. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environ. Pollut. 2018, 232, 31–41. [Google Scholar] [CrossRef]
- Bakshi, S.; Banik, C.; Rathke, S.J.; Laird, D.A. Arsenic sorption on zero-valent iron-biochar complexes. Water Res. 2018, 137, 153–163. [Google Scholar] [CrossRef]
- Bhaumik, M.; Noubactep, C.; Gupta, V.K.; McCrindle, R.I.; Maity, A. Polyaniline/Fe0 composite nanofibers: An excellent adsorbent for the removal of arsenic from aqueous solutions. Chem. Eng. J. 2015, 271, 135–146. [Google Scholar] [CrossRef]
- Sheela, T.; Nayaka, Y.A. Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles. Chem. Eng. J. 2012, 191, 123–131. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, H.; Hu, X.; Wu, Y.; Tang, X.; He, Q.; Peng, S. Enhanced selective adsorption of lead(II) from complex wastewater by DTPA functionalized chitosan-coated magnetic silica nanoparticles based on anion-synergism. J. Hazard. Mater. 2021, 422, 126856. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, J.M.; Choi, J.H.; Kim, D.H.; Han, G.S.; Jung, H.S. Synthesis and adsorption properties of gelatin-conjugated hematite (α-Fe2O3) nanoparticles for lead removal from wastewater. J. Hazard. Mater. 2021, 416, 125696. [Google Scholar] [CrossRef] [PubMed]
- Egbosiuba, T.C.; Egwunyenga, M.C.; Tijani, J.O.; Mustapha, S.; Abdulkareem, A.S.; Kovo, A.S.; Krikstolaityte, V.; Veksha, A.; Wagner, M.; Lisak, G. Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. J. Hazard. Mater. 2021, 423, 126993. [Google Scholar] [CrossRef] [PubMed]
- Rezania, S.; Mojiri, A.; Park, J.; Nawrot, N.; Wojciechowska, E.; Marraiki, N.; Zaghloul, N.S. Removal of lead ions from wastewater using lanthanum sulfide nanoparticle decorated over magnetic graphene oxide. Environ. Res. 2022, 204, 111959. [Google Scholar] [CrossRef] [PubMed]
- Almomani, F.; Bhosale, R.; Khraisheh, M.; Kumar, A.; Almomani, T. Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Appl. Surf. Sci. 2020, 506, 144924. [Google Scholar] [CrossRef]
- Singh, D.; Verma, S.; Gautam, R.K.; Krishna, V. Copper adsorption onto synthesized nitrilotriacetic acid functionalized Fe3O4 nanoparticles: Kinetic, equilibrium and thermodynamic studies. J. Environ. Chem. Eng. 2015, 3, 2161–2171. [Google Scholar] [CrossRef]
- Singh, S.; Perween, S.; Ranjan, A. Dramatic enhancement in adsorption of congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate. J. Environ. Chem. Eng. 2021, 9, 105149. [Google Scholar] [CrossRef]
- Deshpande, B.; Agrawal, P.; Yenkie, M.; Dhoble, S. Prospective of nanotechnology in degradation of waste water: A new challenges. Nano-Struct. Nano-Objects 2020, 22, 100442. [Google Scholar] [CrossRef]
- Jabasingh, S.A.; Belachew, H.; Yimam, A. Iron oxide induced bagasse nanoparticles for the sequestration of Cr6+ ions from tannery effluent using a modified batch reactor. J. Appl. Polym. Sci. 2018, 135, 135. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, J.; Li, Z.; Yang, H.; Zhang, S.; Chen, H. Nano nickel embedded in N-doped CNTs-supported porous biochar for adsorption-reduction of hexavalent chromium. J. Hazard. Mater. 2021, 416, 125693. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, R.; Khan, S.U.; Farooqi, I.; Azam, A. Rapid adsorption of Pb(II) and Cr(VI) from aqueous solution by Aluminum hydroxide nanoparticles: Equilibrium and kinetic evaluation. Mater. Today Proc. 2021, 47, 1430–1437. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Wang, G.; Yang, Z.; Xian, J.; Yang, Y.; Li, T.; Pu, Y.; Jia, Y.; Li, Y.; et al. Adsorption and reduction of Cr(VI) by a novel nanoscale FeS/chitosan/biochar composite from aqueous solution. J. Environ. Chem. Eng. 2021, 9, 105407. [Google Scholar] [CrossRef]
- Yin, L.; Mi, N.; Yao, Y.-R.; Li, J.; Zhang, Y.; Yang, S.-G.; He, H.; Hu, X.; Li, S.-Y.; Ni, L.-X. Efficient removal of Cr(VI) by tannic acid-modified FeS nanoparticles: Performance and mechanisms. Water Sci. Eng. 2021, 14, 210–218. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Yu, M.; Emmanuelawati, I.; Zou, J.; Yuan, Z.; Yu, C. High-Content, Well-Dispersed γ-Fe2O3 Nanoparticles Encapsulated in Macroporous Silica with Superior Arsenic Removal Performance. Adv. Funct. Mater. 2014, 24, 1354–1363. [Google Scholar] [CrossRef]
- Su, H.; Ye, Z.; Hmidi, N. High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 161–172. [Google Scholar] [CrossRef]
- Zhou, C.; Han, C.; Min, X.; Yang, T. Simultaneous adsorption of As(V) and Cr(VI) by zeolite supporting sulfide nanoscale zero-valent iron: Competitive reaction, affinity and removal mechanism. J. Mol. Liq. 2021, 338, 116619. [Google Scholar] [CrossRef]
- Yakout, A.A.; Khan, Z.A. High performance Zr-MnO2@reduced graphene oxide nanocomposite for efficient and simultaneous remediation of arsenates As(V) from environmental water samples. J. Mol. Liq. 2021, 334, 116427. [Google Scholar] [CrossRef]
- Awokoya, K.N.; Oninla, V.O.; Bello, D.J. Synthesis of oxidized Dioscorea dumentorum starch nanoparticles for the adsorption of lead(II) and cadmium(II) ions from wastewater. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100440. [Google Scholar] [CrossRef]
- Oulguidoum, A.; Bouyarmane, H.; Laghzizil, A.; Nunzi, J.-M.; Saoiabi, A. Development of sulfonate-functionalized hydroxyapatite nanoparticles for cadmium removal from aqueous solutions. Colloids Interface Sci. Commun. 2019, 30, 100178. [Google Scholar] [CrossRef]
- Shahrashoub, M.; Bakhtiari, S. The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous Mesoporous Mater. 2021, 311, 110692. [Google Scholar] [CrossRef]
- Chen, S.; Xie, F. Selective adsorption of Copper (II) ions in mixed solution by Fe3O4-MnO2-EDTA magnetic nanoparticles. Appl. Surf. Sci. 2020, 507, 145090. [Google Scholar] [CrossRef]
- Chaabane, L.; Beyou, E.; Luneau, D.; Baouab, M.H.V. Functionalization of graphene oxide sheets with magnetite nanoparticles for the adsorption of copper ions and investigation of its potential catalytic activity toward the homocoupling of alkynes under green conditions. J. Catal. 2020, 388, 91–103. [Google Scholar] [CrossRef]
- White, R.L.; White, C.M.; Turgut, H.; Massoud, A.; Tian, Z.R. Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles. J. Taiwan Inst. Chem. Eng. 2018, 85, 18–28. [Google Scholar] [CrossRef]
- Joshi, P.; Manocha, S. Kinetic and thermodynamic studies of the adsorption of copper ions on hydroxyapatite nanoparticles. Mater. Today Proc. 2017, 4, 10455–10459. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, D.; Liang, Y. Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: A review. Environ. Pollut. 2019, 247, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Deng, S.; Bei, Y.; Huang, Q.; Wang, B.; Huang, J.; Yu, G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. J. Hazard. Mater. 2014, 274, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Vo, H.N.P.; Ngo, H.H.; Guo, W.; Nguyen, T.M.H.; Li, J.; Liang, H.; Deng, L.; Chen, Z.; Nguyen, T.A.H. Poly-and perfluoroalkyl substances in water and wastewater: A comprehensive review from sources to remediation. J. Water Process Eng. 2020, 36, 101393. [Google Scholar] [CrossRef]
- Espana, V.A.A.; Mallavarapu, M.; Naidu, R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): A critical review with an emphasis on field testing. Environ. Technol. Innov. 2015, 4, 168–181. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, L.; Liu, J.; Tang, J.; Zhao, D. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles. Sci. Total Environ. 2016, 562, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Rohaizad, A.; Shahabuddin, S.; Shahid, M.M.; Rashid, N.M.; Hir, Z.A.M.; Ramly, M.M.; Awang, K.; Siong, C.W.; Aspanut, Z. Green synthesis of silver nanoparticles from Catharanthus roseus dried bark extract deposited on graphene oxide for effective adsorption of methylene blue dye. J. Environ. Chem. Eng. 2020, 8, 103955. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Saied, E.; Hamza, M.F. Photocatalytic degradation of real textile and tannery effluent using biosynthesized magnesium oxide nanoparticles (MgO-NPs), heavy metal adsorption, phytotoxicity, and antimicrobial activity. J. Environ. Chem. Eng. 2021, 9, 105346. [Google Scholar] [CrossRef]
- Pourrahim, S.; Salem, A.; Salem, S.; Tavangar, R. Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxide. Environ. Pollut. 2020, 256, 113454. [Google Scholar] [CrossRef] [PubMed]
- Reghioua, A.; Barkat, D.; Jawad, A.H.; Abdulhameed, A.S.; Khan, M.R. Synthesis of Schiff’s base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: Modeling and mechanism study. Sustain. Chem. Pharm. 2021, 20, 100379. [Google Scholar] [CrossRef]
- Samrot, A.V.; Ali, H.H.; Selvarani, J.; Faradjeva, E.; Raji, P.; Prakash, P.; Kumar, S. Adsorption efficiency of chemically synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on crystal violet dye. Curr. Res. Green Sustain. Chem. 2021, 4, 100066. [Google Scholar] [CrossRef]
- Badhai, P.; Kashyap, S.; Behera, S.K. Adsorption of phenol red onto GO-Fe3O4 hybrids in aqueous media. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100282. [Google Scholar] [CrossRef]
- Chauhan, A.K.; Kataria, N.; Garg, V. Green fabrication of ZnO nanoparticles using Eucalyptus spp. leaves extract and their application in wastewater remediation. Chemosphere 2020, 247, 125803. [Google Scholar] [CrossRef]
- AliYounis, S.; Maitlo, H.A.; Lee, J.; Kim, K.-H. Nanotechnology-based sorption and membrane technologies for the treatment of petroleum-based pollutants in natural ecosystems and wastewater streams. Adv. Colloid Interface Sci. 2020, 275, 102071. [Google Scholar] [CrossRef]
- Saputera, W.H.; Amri, A.F.; Daiyan, R.; Sasongko, D. Photocatalytic Technology for Palm Oil Mill Effluent (POME) Wastewater Treatment: Current Progress and Future Perspective. Materials 2021, 14, 2846. [Google Scholar] [CrossRef] [PubMed]
- Bethi, B.; Sonawane, S.H.; Bhanvase, B.A.; Gumfekar, S.P. Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chem. Eng. Process.—Process Intensif. 2016, 109, 178–189. [Google Scholar] [CrossRef]
- Javanbakht, V.; Mohammadian, M. Photo-assisted advanced oxidation processes for efficient removal of anionic and cationic dyes using Bentonite/TiO2 nano-photocatalyst immobilized with silver nanoparticles. J. Mol. Struct. 2021, 1239, 130496. [Google Scholar] [CrossRef]
- Akyüz, D. rGO-TiO2-CdO-ZnO-Ag photocatalyst for enhancing photocatalytic degradation of methylene blue. Opt. Mater. 2021, 116, 111090. [Google Scholar] [CrossRef]
- Cani, D.; van der Waal, J.C.; Pescarmona, P.P. Highly-accessible, doped TiO2 nanoparticles embedded at the surface of SiO2 as photocatalysts for the degradation of pollutants under visible and UV radiation. Appl. Catal. A Gen. 2021, 621, 118179. [Google Scholar] [CrossRef]
- Mousavi, M.; Ghorbani-Moghadam, T.; Kompany, A. Investigation of methyl orange photocatalytic degradation using La0.7Sr1.3CoO4 Ruddlesden-Popper nanoparticles. Ceram. Int. 2021, 47, 20651–20658. [Google Scholar] [CrossRef]
- Adekunle, A.S.; Oyekunle, J.A.; Durosinmi, L.M.; Oluwafemi, O.S.; Olayanju, D.S.; Akinola, A.S.; Obisesan, O.R.; Akinyele, O.F.; Ajayeoba, T.A. Potential of cobalt and cobalt oxide nanoparticles as nanocatalyst towards dyes degradation in wastewater. Nano-Struct. Nano-Objects 2020, 21, 100405. [Google Scholar] [CrossRef]
- Guo, F.; Chen, Z.; Huang, X.; Cao, L.; Cheng, X.; Shi, W.; Chen, L. Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light. Sep. Purif. Technol. 2021, 275, 119223. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Mamba, B.B. Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review. Sustain. Mater. Technol. 2020, 23, e00140. [Google Scholar] [CrossRef]
- Muhambihai, P.; Rama, V.; Subramaniam, P. Photocatalytic degradation of aniline blue, brilliant green and direct red 80 using NiO/CuO, CuO/ZnO and ZnO/NiO nanocomposites. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100360. [Google Scholar] [CrossRef]
- Dhas, C.R.; Venkatesh, R.; Jothivenkatachalam, K.; Nithya, A.; Benjamin, B.S.; Raj, A.M.E.; Jeyadheepan, K.; Sanjeeviraja, C. Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles. Ceram. Int. 2015, 41, 9301–9313. [Google Scholar] [CrossRef]
- Alzahrani, E. Photodegradation of Binary Azo Dyes Using Core-Shell Fe3O4/SiO2/TiO2 Nanospheres. Am. J. Anal. Chem. 2017, 8, 95–115. [Google Scholar] [CrossRef] [Green Version]
- Stanley, R.; Jebasingh, J.A.; Stanley, P.K.; Ponmani, P.; Shekinah, M.; Vasanthi, J. Excellent Photocatalytic degradation of Methylene Blue, Rhodamine B and Methyl Orange dyes by Ag-ZnO nanocomposite under natural sunlight irradiation. Optik 2021, 231, 166518. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, K.; Yu, Y.; He, H. TiO2/HZSM-5 nano-composite photocatalyst: HCl treatment of NaZSM-5 promotes photocatalytic degradation of methyl orange. Chem. Eng. J. 2010, 163, 62–67. [Google Scholar] [CrossRef]
- Vu, T.A.; Dao, C.D.; Hoang, T.T.; Nguyen, K.T.; Le, G.H.; Dang, P.T.; Tran, H.T.; Nguyen, T.V. Highly photocatalytic activity of novel nano-sized Ag3PO4 for Rhodamine B degradation under visible light irradiation. Mater. Lett. 2013, 92, 57–60. [Google Scholar] [CrossRef]
- Ashiq, H.; Nadeem, N.; Mansha, A.; Iqbal, J.; Yaseen, M.; Zahid, M.; Shahid, I. G-C3N4/Ag@CoWO4: A novel sunlight active ternary nanocomposite for potential photocatalytic degradation of rhodamine B dye. J. Phys. Chem. Solids 2021, 161, 110437. [Google Scholar] [CrossRef]
- Dariani, R.; Esmaeili, A.; Mortezaali, A.; Dehghanpour, S. Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 2016, 127, 7143–7154. [Google Scholar] [CrossRef]
- Niu, Z.; Tao, X.; Huang, H.; Qin, X.; Ren, C.; Wang, Y.; Shan, B.; Liu, Y. Green synthesis of magnetically recyclable Mn0.6Zn0.4Fe2O4@Zn1−xMnxS composites from spent batteries for visible light photocatalytic degradation of phenol. Chemosphere 2021, 287, 132238. [Google Scholar] [CrossRef] [PubMed]
- Jassal, V.; Shanker, U.; Kaith, B.S.; Shankar, S. Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes. RSC Adv. 2015, 5, 26141–26149. [Google Scholar] [CrossRef]
- Mortazavi-Derazkola, S.; Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant. Adv. Powder Technol. 2017, 28, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7 nanostructures prepared by a modified Pechini approach. Sep. Purif. Technol. 2017, 179, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Saad, A.M.; Abukhadra, M.R.; Ahmed, S.A.-K.; Elzanaty, A.M.; Mady, A.H.; Betiha, M.; Shim, J.-J.; Rabie, A.M. Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce–ZnO nano-flowers under visible light. J. Environ. Manag. 2020, 258, 110043. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Rupa, E.J.; Arif, M.H.; Li, J.F.; Anandapadmanaban, G.; Kang, J.P.; Kim, M.; Ahn, J.C.; Akter, R.; Yang, D.C.; et al. Synthesis of zinc oxide nanoparticles from Gynostemma pentaphyllum extracts and assessment of photocatalytic properties through malachite green dye decolorization under UV illumination-A Green Approach. Optik 2021, 239, 166249. [Google Scholar] [CrossRef]
- Liu, G.; Abukhadra, M.R.; El-Sherbeeny, A.M.; Mostafa, A.M.; Elmeligy, M.A. Insight into the photocatalytic properties of diatomite@Ni/NiO composite for effective photo-degradation of malachite green dye and photo-reduction of Cr (VI) under visible light. J. Environ. Manag. 2020, 254, 109799. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Chen, Y.; Hu, X.; Wang, C.; Huang, X.; Liu, D.; Zhang, Y. Monovalent/Divalent salts separation via thin film nanocomposite nanofiltration membrane containing aminated TiO2 nanoparticles. J. Taiwan Inst. Chem. Eng. 2020, 112, 169–179. [Google Scholar] [CrossRef]
- Razmjou, A.; Mansouri, J.; Chen, V. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J. Membr. Sci. 2011, 378, 73–84. [Google Scholar] [CrossRef]
- Yan, L.; Li, Y.S.; Xiang, C.B. Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 2005, 46, 7701–7706. [Google Scholar] [CrossRef]
- Bao, M.; Zhu, G.; Wang, L.; Wang, M.; Gao, C. Preparation of monodispersed spherical mesoporous nanosilica–polyamide thin film composite reverse osmosis membranes via interfacial polymerization. Desalination 2013, 309, 261–266. [Google Scholar] [CrossRef]
- Dai, R.; Han, H.; Wang, T.; Li, X.; Wang, Z. Enhanced removal of hydrophobic endocrine disrupting compounds from wastewater by nanofiltration membranes intercalated with hydrophilic MoS2 nanosheets: Role of surface properties and internal nanochannels. J. Membr. Sci. 2021, 628, 119267. [Google Scholar] [CrossRef]
- Moradi, G.; Zinadini, S.; Rajabi, L. Development of high flux nanofiltration membrane using para-amino benzoate ferroxane nanoparticle for enhanced antifouling behavior and dye removal. Process Saf. Environ. Prot. 2020, 144, 65–78. [Google Scholar] [CrossRef]
- Vatanpour, V.; Khadem, S.S.M.; Masteri-Farahani, M.; Mosleh, N.; Ganjali, M.R.; Badiei, A.; Pourbashir, E.; Mashhadzadeh, A.H.; Munir, M.T.; Mahmodi, G.; et al. Anti-fouling and permeable polyvinyl chloride nanofiltration membranes embedded by hydrophilic graphene quantum dots for dye wastewater treatment. J. Water Process Eng. 2020, 38, 101652. [Google Scholar] [CrossRef]
- Shalaby, M.; Abdallah, H.; Cenian, A.; Sołowski, G.; Sawczak, M.; Shaban, A.; Ramadan, R. Laser synthesized gold-nanoparticles, blend NF membrane for phosphate separation from wastewater. Sep. Purif. Technol. 2020, 247, 116994. [Google Scholar] [CrossRef]
- Khalid, F.; Tabish, M.; Bora, K.A.I. Novel poly(vinyl alcohol) nanofiltration membrane modified with dopamine coated anatase TiO2 core shell nanoparticles. J. Water Process Eng. 2020, 37, 101486. [Google Scholar] [CrossRef]
- Liga, M.V.; Bryant, E.L.; Colvin, V.L.; Li, Q. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res. 2011, 45, 535–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laflamme, O.; Sérodes, J.-B.; Simard, S.; Legay, C.; Dorea, C.; Rodriguez, M.J. Occurrence and fate of ozonation disinfection by-products in two Canadian drinking water systems. Chemosphere 2020, 260, 127660. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Huang, R.; Cheng, Y.; Liu, J.; Lau, B.L.; Wiesner, M.R. Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Res. 2013, 47, 3959–3965. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.-T.; Lai, D.; McLain, J.L.; Manibusan, M.K.; Dellarco, V. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products. Environ. Health Perspect. 2002, 110 (Suppl. 1), 75–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, M.; Okura, I.E. (Eds.) Photocatalysis: Science and Technology; Springer: New York, NY, USA, 2002; ISBN 3-540-43473-9. [Google Scholar]
- Motshekga, S.C.; Ray, S.S.; Maity, A. Synthesis and characterization of alginate beads encapsulated zinc oxide nanoparticles for bacteria disinfection in water. J. Colloid Interface Sci. 2018, 512, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Prathna, T.C.; Sharma, S.K.; Kennedy, M. Nanoparticles in household level water treatment: An overview. Sep. Purif. Technol. 2018, 199, 260–270. [Google Scholar] [CrossRef]
- Jiang, S.; Tang, C.; Gong, Z.; Zhang, Z.; Wang, D.; Fan, M. Facile preparation of chitosan coated silver nanoparticles embedded cotton fabric for point-of-use water disinfection. Mater. Lett. 2020, 277, 128256. [Google Scholar] [CrossRef]
- Rai, P.K.; Kumar, V.; Lee, S.; Raza, N.; Kim, K.-H.; Ok, Y.S.; Tsang, D.C. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ. Int. 2018, 119, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.K.; Sundaram, S.; Yadav, K.K.; Srivastav, A.L. An overview of silver nano-particles as promising materials for water disinfection. Environ. Technol. Innov. 2021, 23, 101721. [Google Scholar] [CrossRef]
- Khan, S.T.; Malik, A. Engineered nanomaterials for water decontamination and purification: From lab to products. J. Hazard. Mater. 2019, 363, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.R.; Rosa, R.D.; Da Veiga, M.A.M.S. Colloidal silver and silver nanoparticles bioaccessibility in drinking water filters. J. Environ. Chem. Eng. 2016, 4, 3451–3458. [Google Scholar] [CrossRef]
- Mpenyana-Monyatsi, L.; Mthombeni, N.; Onyango, M.; Momba, M. The effects of material loading and flow rate on the disinfection of pathogenic microorganisms using cation resin-silver nanoparticle filter system. Phys. Chem. Earth Parts A/B/C 2017, 100, 181–188. [Google Scholar] [CrossRef]
- Arora, R. Nano adsorbents for removing the arsenic from waste/ground water for energy and environment management—A review. Mater. Today Proc. 2021, 45, 4437–4440. [Google Scholar] [CrossRef]
- Pinakidou, F.; Katsikini, M.; Paloura, E.; Simeonidis, K.; Mitraka, E.; Mitrakas, M. Monitoring the role of Mn and Fe in the As-removal efficiency of tetravalent manganese feroxyhyte nanoparticles from drinking water: An X-ray absorption spectroscopy study. J. Colloid Interface Sci. 2016, 477, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Bettini, S.; Pagano, R.; Valli, L.; Giancane, G. Drastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles. Nanoscale 2014, 6, 10113–10117. [Google Scholar] [CrossRef] [PubMed]
- Simeonidis, K.; Kaprara, E.; Samaras, T.; Angelakeris, M.; Pliatsikas, N.; Vourlias, G.; Mitrakas, M.; Andritsos, N. Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI). Sci. Total Environ. 2015, 535, 61–68. [Google Scholar] [CrossRef]
- Markeb, A.A.; Alonso, A.; Sánchez, A.; Font, X. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe3O4 and Ce-Ti oxide nanoparticles. Sci. Total Environ. 2017, 598, 949–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riahi, F.; Bagherzadeh, M.; Hadizadeh, Z. Modification of Fe3O4 superparamagnetic nanoparticles with zirconium oxide; preparation, characterization and its application toward fluoride removal. RSC Adv. 2015, 5, 72058–72068. [Google Scholar] [CrossRef]
- Roy, E.; Patra, S.; Madhuri, R.; Sharma, P. A single solution for arsenite and arsenate removal from drinking water using cysteine@ZnS:TiO2 nanoparticle modified molecularly imprinted biofouling-resistant filtration membrane. Chem. Eng. J. 2016, 304, 259–270. [Google Scholar] [CrossRef]
- Luan, H.; Teychene, B.; Huang, H. Efficient removal of As(III) by Cu nanoparticles intercalated in carbon nanotube membranes for drinking water treatment. Chem. Eng. J. 2019, 355, 341–350. [Google Scholar] [CrossRef]
- Gora, S.L.; Andrews, S.A. Adsorption of natural organic matter and disinfection byproduct precursors from surface water onto TiO2 nanoparticles: pH effects, isotherm modelling and implications for using TiO2 for drinking water treatment. Chemosphere 2017, 174, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Gora, S.; Liang, R.; Zhou, Y.N.; Andrews, S. Settleable engineered titanium dioxide nanomaterials for the removal of natural organic matter from drinking water. Chem. Eng. J. 2018, 334, 638–649. [Google Scholar] [CrossRef] [Green Version]
- Gora, S.L.; Andrews, S.A. Removal of natural organic matter and disinfection byproduct precursors from drinking water using photocatalytically regenerable nanoscale adsorbents. Chemosphere 2019, 218, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Gupta, S.K. A novel process of adsorption cum enhanced coagulation-flocculation spiked with magnetic nanoadsorbents for the removal of aromatic and hydrophobic fraction of natural organic matter along with turbidity from drinking water. J. Clean. Prod. 2020, 244, 118899. [Google Scholar] [CrossRef]
- Parisi, C.; Vigani, M.; Rodríguez-Cerezo, E. Agricultural Nanotechnologies: What are the current possibilities? Nano Today 2015, 10, 124–127. [Google Scholar] [CrossRef]
- Servin, A.D.; White, J.C. Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 2016, 1, 9–12. [Google Scholar] [CrossRef]
- Acharya, A.; Pal, P.K. Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. NanoImpact 2020, 19, 100232. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Sushkova, S.; Behal, A.; Maksimov, A.; Blicharska, E.; Ghazaryan, K.; Movsesyan, H.; Barsova, N. ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environ. Geochem. Health 2019, 42, 147–158. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Alam Cheema, S.A.; Rehman, H.U.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total. Environ. 2020, 721, 137778. [Google Scholar] [CrossRef] [PubMed]
- DeRosa, M.C.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in fertilizers. Nat. Nanotechnol. 2010, 5, 91. [Google Scholar] [CrossRef] [PubMed]
- Giroto, A.S.; Guimarães, G.G.F.; Foschini, M.; Ribeiro, C. Role of Slow-Release Nanocomposite Fertilizers on Nitrogen and Phosphate Availability in Soil. Sci. Rep. 2017, 7, srep46032. [Google Scholar] [CrossRef] [PubMed]
- Ombódi, A.; Saigusa, M. Broadcast application versus band application of polyolefin-coated fertilizer on green peppers grown on andisol. J. Plant Nutr. 2000, 23, 1485–1493. [Google Scholar] [CrossRef]
- Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2018, 13, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Corradini, E.; De Moura, M.R.; Mattoso, L.H.C. A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polym. Lett. 2010, 4, 509–515. [Google Scholar] [CrossRef]
- Wilson, M.A.; Tran, N.H.; Milev, A.S.; Kannangara, G.S.K.; Volk, H.; Lu, G. (Max) Nanomaterials in soils. Geoderma 2008, 146, 291–302. [Google Scholar] [CrossRef]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Chhipa, H. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 2017, 15, 15–22. [Google Scholar] [CrossRef]
- Syu, Y.-Y.; Hung, J.-H.; Chen, J.-C.; Chuang, H.-W. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem. 2014, 83, 57–64. [Google Scholar] [CrossRef]
- Carriger, J.; Rand, G.M.; Gardinali, P.R.; Perry, W.B.; Tompkins, M.S.; Fernandez, A.M. Pesticides of Potential Ecological Concern in Sediment from South Florida Canals: An Ecological Risk Prioritization for Aquatic Arthropods. Soil Sediment Contam. Int. J. 2006, 15, 21–45. [Google Scholar] [CrossRef]
- Iavicoli, I.; Leso, V.; Beezhold, D.; Shvedova, A.A. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharmacol. 2017, 329, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Bergeson, L.L. Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ. Qual. Manag. 2010, 19, 79–85. [Google Scholar] [CrossRef]
- Guan, Y.F.; Pearce, R.C.; Melechko, A.V.; Hensley, D.; Simpson, M.; Rack, P. Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth. Nanotechnology 2008, 19, 235604. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.S.; Shiny, P.J.; Anjali, C.H.; Jerobin, J.; Goshen, K.M.; Magdassi, S.; Mukherjee, A.; Chandrasekaran, N. Distinctive effects of nano-sized permethrin in the environment. Environ. Sci. Pollut. Res. 2013, 20, 2593–2602. [Google Scholar] [CrossRef] [PubMed]
- Pankaj; Shakil, N.A.; Kumar, J.; Singh, M.K.; Singh, K. Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognitainfecting tomato. J. Environ. Sci. Health Part B 2012, 47, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Roy, I.; Lodh, G.; Patra, P.; Choudhury, S.R.; Samanta, A.; Goswami, A. Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: A biologically safe alternative to neurotoxic pesticides. J. Environ. Sci. Health Part B 2013, 48, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Kim, K.S.; Lamsal, K.; Kim, Y.-J.; Kim, S.B.; Jung, M.; Sim, S.-J.; Kim, H.-S.; Chang, S.-J.; Kim, J.K.; et al. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J. Microbiol. Biotechnol. 2009, 19, 760–764. [Google Scholar] [PubMed]
- Chhipa, H.; Kaushik, N. Development of nano-bio-pesticide using Iron and Eucalyptus plant extract and their application in pest management. In Proceedings of the Symposium on Recent Advances in Biotechnology for Food and Fuel, TERI, New Dehli, India, 19–20 November 2015. [Google Scholar]
- Gogos, A.; Knauer, K.; Bucheli, T.D. Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities. J. Agric. Food Chem. 2012, 60, 9781–9792. [Google Scholar] [CrossRef] [PubMed]
- Stadler, T.; Buteler, M.; Weaver, D.K.; Sofie, S. Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J. Stored Prod. Res. 2012, 48, 81–90. [Google Scholar] [CrossRef]
- Shyla, K.K.; Natarajan, N.; Nakkeeran, S. Antifungal activity of zinc oxide, silver and titanium dioxide nanoparticles against Macrophomina phaseolina. Ind. Soc. Mycol. Plant Pathol. 2014, 44, 268–273. [Google Scholar]
- Grillo, R.; dos Santos, N.Z.P.; Maruyama, C.R.; Rosa, A.H.; Lima, R.; Fraceto, L. Poly(ε-caprolactone)nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. J. Hazard. Mater. 2012, 231–232, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.J.; Basri, M.; Omar, D.; Abdul Rahman, M.B.; Salleh, A.B.; Raja Abdul Rahman Rahman, R.N.Z. Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Manag. Sci. 2012, 69, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, L.-H.L.; Hovgaard, M.B.; Sutherland, D.S.; Autrup, H.; Besenbacher, F.; Scott-Fordsmand, J.J. Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 2010, 20, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Moskvin, G.A.; Spakovica, E.G. New Method and Low-Cost Intelligent Instrument for the Fraud Detection and Conformity Control of Agricultural Products. In Proceedings of the 2002 ASAE Annual Meeting, Chicago, IL, USA, 28–31 July 2002; American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA, 2002; Volume 1, p. 1. [Google Scholar]
- Day, W. Engineering precision into variable biological systems. Ann. Appl. Biol. 2005, 146, 155–162. [Google Scholar] [CrossRef]
- Neethirajan, S.; Tuteja, S.K.; Huang, S.-T.; Kelton, D. Recent advancement in biosensors technology for animal and livestock health management. Biosens. Bioelectron. 2017, 98, 398–407. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Paper Rome 2012; FAO: Rome, Italy, 2012. [Google Scholar]
- Antonacci, A.; Arduini, F.; Moscone, D.; Palleschi, G.; Scognamiglio, V. Nanostructured (Bio)sensors for smart agriculture. TrAC Trends Anal. Chem. 2018, 98, 95–103. [Google Scholar] [CrossRef]
- Scognamiglio, V. Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years. Biosens. Bioelectron. 2013, 47, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Mali, S.C.; Raj, S.; Trivedi, R. Nanotechnology a novel approach to enhance crop productivity. Biochem. Biophys. Rep. 2020, 24, 100821. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuhn, R.; Bryant, I.M.; Jensch, R.; Böllmann, J. Applications of Environmental Nanotechnologies in Remediation, Wastewater Treatment, Drinking Water Treatment, and Agriculture. Appl. Nano 2022, 3, 54-90. https://doi.org/10.3390/applnano3010005
Kuhn R, Bryant IM, Jensch R, Böllmann J. Applications of Environmental Nanotechnologies in Remediation, Wastewater Treatment, Drinking Water Treatment, and Agriculture. Applied Nano. 2022; 3(1):54-90. https://doi.org/10.3390/applnano3010005
Chicago/Turabian StyleKuhn, Ramona, Isaac Mbir Bryant, Robert Jensch, and Jörg Böllmann. 2022. "Applications of Environmental Nanotechnologies in Remediation, Wastewater Treatment, Drinking Water Treatment, and Agriculture" Applied Nano 3, no. 1: 54-90. https://doi.org/10.3390/applnano3010005
APA StyleKuhn, R., Bryant, I. M., Jensch, R., & Böllmann, J. (2022). Applications of Environmental Nanotechnologies in Remediation, Wastewater Treatment, Drinking Water Treatment, and Agriculture. Applied Nano, 3(1), 54-90. https://doi.org/10.3390/applnano3010005