The Laplacian Flow of Locally Conformal Calibrated G2-Structures
Abstract
:1. Introduction
2. -Structures
3. The Laplacian Flow of Locally Conformal Calibrated G2-Structures
- i)
- if , then ;
- ii)
- if , then ;
- iii)
- if , then ;
- iv)
- if , then .
4. Solutions of the Laplacian Flow on Locally Conformal Calibrated Solvmanifolds
4.1. The Laplacian Flow on K
4.2. The Laplacian Flow on S
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bryant, R.L. Metrics with exceptional holonomy. Ann. Math. 1987, 126, 525–576. [Google Scholar] [CrossRef]
- Fernández, M.; Gray, A. Riemannian manifolds with structure group G2. Ann. Mat. Pura Appl. 1982, 132, 19–45. [Google Scholar] [CrossRef]
- Bonan, E. Sur des variétés riemanniennes a groupe d’holonomie G2 ou Spin(7). C. R. Acad. Sci. Paris 1966, 262, 127–129. [Google Scholar]
- Salamon, S. Riemannian Geometry and Holonomy Groups; Longman Scientific and Technical: Harlow Essex, UK, 1989. [Google Scholar]
- Hitchin, N.J. The geometry of three-forms in six dimensions. J. Diff. Geom. 2000, 55, 547–576. [Google Scholar] [CrossRef]
- Hitchin, N.J. Stable forms and special metrics. In Global Differential Geometry: The Mathematical Legacy of Alfred Gray, Proceedings of the International Congress on Differential Geometry, Bilbao, Spain, 18–23 September 2000; Fernández, M., Wolf, J.A., Eds.; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2001; Volume 288, pp. 70–89. [Google Scholar]
- Joyce, D.D. Compact Riemannian 7-manifolds with holonomy G2. I. J. Differ. Geom. 1996, 43, 291–328. [Google Scholar] [CrossRef]
- Joyce, D.D. Compact Riemannian 7-manifolds with holonomy G2. II. J. Differ. Geom. 1996, 43, 329–375. [Google Scholar] [CrossRef]
- Kovalev, A. Twisted connected sums and special Riemannian holonomy. J. Reine Angew. Math. 2003, 565, 125–160. [Google Scholar] [CrossRef]
- Corti, A.; Haskins, M.; Nordström, J.; Pacini, T. G2-manifolds and associative submanifolds via semi-Fano 3-folds. Duke Math. J. 2015, 164, 1971–2092. [Google Scholar] [CrossRef]
- Joyce, D.D.; Karigiannis, S. A new construction of compact torsion-free G2-manifolds by gluing families of Eguchi-Hanson spaces. arXiv, 2017; arXiv:1707.09325. [Google Scholar]
- Chiossi, S.; Fino, A. Conformally parallel G2 structures on a class of solvmanifolds. Math. Z. 2006, 252, 825–848. [Google Scholar] [CrossRef]
- Ivanov, S.; Parton, M.; Piccinni, P. Locally conformal parallel G2 and Spin(7) manifolds. Math. Res. Lett. 2006, 13, 167–177. [Google Scholar] [CrossRef]
- Harvey, R.; Lawson, H.B., Jr. Calibrated geometries. Acta Math. 1982, 148, 47–157. [Google Scholar] [CrossRef]
- Banyaga, A. On the geometry of locally conformal symplectic manifolds. In Infinite Dimensional Lie Groups in Geometry and Representation Theory, Proceedings of the 2000 Howard Conference, Washington, DC, USA, 17–21 August 2000; World Scientific Publishing: River Edge, NJ, USA, 2002; pp. 79–91. [Google Scholar]
- Bazzoni, G. Locally conformally symplectic and Kähler geometry. arXiv, 2017; arXiv:1711.02440. [Google Scholar]
- Bazzoni, G.; Marrero, J.C. On locally conformal symplectic manifolds of the first kind. Bull. Sci. Math. 2018, 143, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.; Ornea, L. Locally Conformal Kähler Geometry; Progress in Mathematics; Birkhäuser: Boston, MA, USA, 1998; Volume 155, p. xiv+327. [Google Scholar]
- Eliashberg, Y.; Murphy, E. Making cobordisms symplectic. arXiv, 2015; arXiv:1504.06312. [Google Scholar]
- Ornea, L.; Verbitsky, M. A report on locally conformally Kähler manifolds. Contemp. Math. 2011, 542, 135–150. [Google Scholar]
- Vaisman, I. Locally conformal symplectic manifolds. Int. J. Math. Math. Sci. 1985, 8, 521–536. [Google Scholar] [CrossRef]
- Bazzoni, G.; Raffero, A. Special types of locally conformal closed G2-structures. Axioms 2018, 7, 90. [Google Scholar] [CrossRef]
- Fernández, M.; Fino, A.; Raffero, A. Locally conformal calibrated G2-manifolds. Annali Matematica Pura Applicata 2016, 195, 1721–1736. [Google Scholar] [CrossRef]
- Fernández, M.; Ugarte, L. A differential complex for locally conformal calibrated G2 manifolds. Ill. J. Math. 2000, 44, 363–390. [Google Scholar]
- Fino, A.; Raffero, A. Einstein locally conformal calibrated G2-structures. Math. Z. 2015, 280, 1093–1106. [Google Scholar] [CrossRef]
- Cleyton, R.; Ivanov, S. On the geometry of closed G2-structures. Commun. Math. Phys. 2007, 270, 53–67. [Google Scholar] [CrossRef]
- Bryant, R.L. Some remarks on G2-structures. In Proceedings of the Gökova Geometry-Topology Conference, Gökova, Turkey, 30 May–3 June 2005; International Press of Boston: Somerville, MA, USA, 2006; pp. 75–109. [Google Scholar]
- Hamilton, R.S. Three-manifolds with positive Ricci curvature. J. Diff. Geom. 1982, 17, 255–306. [Google Scholar] [CrossRef]
- Bryant, R.L.; Xu, F. Laplacian flow for closed G2-structures: Short time behavior. arXiv, 2011; arXiv:1101.2004v1. [Google Scholar]
- Lotay, J.D.; Wei, Y. Laplacian flow for closed G2-structures: Shi-type estimates, uniqueness and compactness. Geom. Funct. Anal. 2017, 27, 165–233. [Google Scholar] [CrossRef]
- Lotay, J.D.; Wei, Y. Stability of torsion free G2-structures along the Laplacian flow. arXiv, 2015; arXiv:1504.07771. [Google Scholar]
- Lotay, J.D.; Wei, Y. Laplacian flow for closed G2 structures: Real analyticity. arXiv, 2015; arXiv:1601.04258. [Google Scholar]
- Fernández, M.; Fino, A.; Manero, V. Laplacian flow of closed G2-structures inducing nilsolitons. J. Geom. Anal. 2016, 26, 1808–1837. [Google Scholar] [CrossRef]
- Karigiannis, S.; McKay, B.; Tsui, M.P. Soliton solutions for the Laplacian coflow of some G2-structures with symmetry. Diff. Geom. Appl. 2012, 30, 318–333. [Google Scholar] [CrossRef]
- Grigorian, S. Short-time behavior of a modified Laplacian coflow of G2-structures. Adv. Math. 2013, 248, 378–415. [Google Scholar] [CrossRef]
- Grigorian, S. Flows of co-closed G2-structures. arXiv, 2011; arXiv:1811.10505. [Google Scholar]
- Bagaglini, L.; Fernández, M.; Fino, A. Laplacian coflow on the 7-dimensional Heisenberg group. arXiv, 2017; arXiv:1704.00295. [Google Scholar]
- Bagaglini, L.; Fino, A. The laplacian coflow on almost-abelian Lie groups. Ann. Mat. Pura Appl. 2018, 197, 1855–1873. [Google Scholar] [CrossRef]
- Manero, V.; Otal, A.; Villacampa, R. Solutions of the Laplacian flow and coflow of a locally conformal parallel G2-structure. arXiv, 2017; arXiv:1711.08644v1. [Google Scholar]
- Lauret, J. The Ricci flow for simply connected nilmanifolds. Commun. Anal. Geom. 2011, 19, 831–854. [Google Scholar] [CrossRef] [Green Version]
Class | Type | Conditions |
---|---|---|
parallel | ||
closed, calibrated | ||
locally conformal parallel | ||
locally conformal calibrated |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, M.; Manero, V.; Sánchez, J. The Laplacian Flow of Locally Conformal Calibrated G2-Structures. Axioms 2019, 8, 7. https://doi.org/10.3390/axioms8010007
Fernández M, Manero V, Sánchez J. The Laplacian Flow of Locally Conformal Calibrated G2-Structures. Axioms. 2019; 8(1):7. https://doi.org/10.3390/axioms8010007
Chicago/Turabian StyleFernández, Marisa, Victor Manero, and Jonatan Sánchez. 2019. "The Laplacian Flow of Locally Conformal Calibrated G2-Structures" Axioms 8, no. 1: 7. https://doi.org/10.3390/axioms8010007
APA StyleFernández, M., Manero, V., & Sánchez, J. (2019). The Laplacian Flow of Locally Conformal Calibrated G2-Structures. Axioms, 8(1), 7. https://doi.org/10.3390/axioms8010007