The Effect of the Spargers Design on the Wastewater Treatment of Gas-Liquid Dispersion Process in a Stirred Tank
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Experimental Method
2.3. CFD Methodology
2.3.1. 3D Geometry and Mesh Generation
2.3.2. Numerical Simulation of Gas-Liquid Two-Phase Mixing System
3. Results and Discussion
3.1. Experimental Validation of CFD Model
3.2. Experimental Observations of Sparger Distribution on Power Consumption
3.3. Numerical Assessment of the Effect of Sparger Distribution on Mixing Flow Patterns
3.4. Numerical Assessment of the Effect of Sparger Distribution on Cavity Formation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trad, Z.; Vial, C.; Fontaine, J.P.; Larroche, C. Modeling of hydrodynamics and mixing in a submerged membrane bioreactor. Chem. Eng. J. 2015, 282, 77–90. [Google Scholar] [CrossRef]
- Warmoeskerken, M.M.C.G.; van Houwelingen, M.C.; Drijlink, J.J.; Smith, J.M. The role of cavity formation in stirred gas-liquid-solid reactors. Chem. Eng. Res. Des. 1984, 62, 197–200. [Google Scholar]
- Shewale, S.D.; Pandit, A.B. Studies in multiple impeller agitated gas–liquid contactors. Chem. Eng. Sci. 2006, 61, 489–504. [Google Scholar] [CrossRef]
- Bouaifi, M.; Roustan, M. Power consumption, mixing time and homogenization energy in dual—Impeller agitated gas—liquid reactors. Chem. Eng. Process 2001, 40, 87–95. [Google Scholar] [CrossRef]
- Miryahyaei, S.; Olinga, K.; Ayub, M.S.; Jayaratna, S.S.; Othman, M.; Eshtiaghi, N. Rheological measurements as indicators for hydrolysis rate, organic matter removal, and dewaterability of digestate in anaerobic digesters. Env. Chem. Eng. 2020, 8, 103970. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, J.; Poncin, S.; Li, H.Z. Effect of hydrodynamic shear on biogas production and granule characteristics in a continuous stirred tank reactor. Process Biochem. 2016, 51, 345–351. [Google Scholar] [CrossRef]
- Wei, P.; Mudde, R.F.; Uijttewaal, W.; Spanjers, H.; van Lier, J.B.; de Kreuk, M. Characterising the two-phase flow and mixing performance in a gas-mixed anaerobic digester: Importance for scaled-up applications. Water Res. 2019, 149, 86–97. [Google Scholar] [CrossRef]
- Fernandes del Pozo, D.; Liné, A.; Van Geem, K.M.; Le Men, C.; Nopens, I. Hydrodynamic analysis of an axial impeller in a non-Newtonian fluid through particle image velocimetry. AIChE J. 2020, 66, e16939. [Google Scholar] [CrossRef]
- Nienow, A.W.; Wisdom, D.J.; Middleton, J.C. The Effect of Scale and Geometry On Flooding, Recirculation and Power in Stirred Vessels. In Proceedings of the Proceedings of the Second European Conference on Mixing, Cambridge, UK, 7 April 1977. [Google Scholar]
- Gumulya, M.; Joshi, J.B.; Utikar, R.P.; Evans, G.M.; Pareek, V. Bubbles in viscous liquids: Time dependent behaviour and wake characteristics. Chem. Eng. Sci. 2016, 144, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Hassan IT, M.; Robinson, C.W. Stirred-tank mechanical power requirement and gas holdup in aerated aqueous phases. AIChE J. 2001, 23, 48–56. [Google Scholar] [CrossRef]
- Bruijn, W.; Riet, K.V.; Smith, J.M. Power consumption with aerated Rushton turbines. Trans. Inst. Chem. Engrs. 1974, 52, 88–104. [Google Scholar]
- Botton, R.; Cosserat, D.; Poncin, S.; Wild, G. A simple gas-liquid mass transfer jet system. In Proceedings of the 8th World Congress of Chemical Engineering, Montréal, Canada, 23–27 August 2009. [Google Scholar]
- Birch, D.; Ahmed, N. The Influence of Sparger Design and Location on Gas Dispersion in Stirred Vessels. Chem. Eng. Res. Des. 1997, 75, 487–496. [Google Scholar] [CrossRef]
- Sardeing, R.; Aubin, J.; Poux, M.; Xuereb, C. Gas–Liquid Mass Transfer: Influence of Sparger Location. Chem. Eng. Res. Des. 2004, 82, 1161–1168. [Google Scholar] [CrossRef] [Green Version]
- Ohmori, H.; Ishii, Y.; Shono, A.; Satoh, K. Gas Absorption in Mechanically Agitated Gas-Liquid Contactors with a Large Ring Sparger and a Downflow Pitched Blade Turbine. Kagaku Kogaku Ronbunshu 2005, 31, 1–6. [Google Scholar] [CrossRef]
- Kamei, N.; Mitsuhashi, K.; Oda, E.; Furukawa, H.; Kato, Y.; Tada, Y. Scale up and Effect of Sparger Position on Power Consumption and Mass Transfer in Mixing Vessel with Disk Turbine. Kagaku Kogaku Ronbunshu 2012, 38, 203–208. [Google Scholar] [CrossRef]
- Kamei, N.; Kato, Y.; Tada, Y.; Ando, J.; Nagatsu, Y. Effects of Sparger Geometry on Power Consumption and Mass Transfer in a Gas–Liquid Agitated Vessel with Disk Turbine. J. Chem. Eng. Jpn. 2009, 42, 664–668. [Google Scholar] [CrossRef]
- Rewatkar, V.B.; Joshi, J.B. Role of sparger design in mechanically agitated gas-liquid reactors. Part I: Power consumption. Chem. Eng. Technol. 1991, 14, 333–347. [Google Scholar] [CrossRef]
- Rewatkar, V.B.; Joshi, J.B. Effect of addition of alcohol on the design parameters of mechanically agitated three-phase reactors. Chem. Eng. J. 1992, 49, 107–117. [Google Scholar] [CrossRef]
- Lee, B.W.; Dudukovic, M.P. Determination of flow regime and gas holdup in gas–liquid stirred tanks. Chem. Eng. Sci. 2014, 109, 264–275. [Google Scholar] [CrossRef]
- Ahmmed, M.S.; Jensen, M.B.; Kofoed, M.V.; Ottosen, L.D.; Batstone, D.J. Hydrodynamic Analysis of Full-Scale in-situ Biogas Upgrading in Manure Digesters. Water Res. 2021, 203, 117528. [Google Scholar] [CrossRef]
- Forte, G.; Alberini, F.; Simmons, M.J.; Stitt, E.H. Measuring Gas Hold-up in Gas-Liquid/Gas-Solid-Liquid Stirred Tanks with an Electrical Resistance Tomography Linear Probe. AIChE J. 2019, 65, e16586. [Google Scholar] [CrossRef] [Green Version]
- Montane, G.; Horn, D.; Paglianti, A. Gas-Liquid Flow and Bubble Size Distribution in Stirred Tank. Chem. Eng. Sci. 2008, 63, 2107–2118. [Google Scholar] [CrossRef]
- Ma, Z.C.; Bao, Y.Y.; Gao, N.; Gao, Z.M. Gas-Liquid Dispersion by Hollow-Blade Disk Turbines with Different Blade Shapes. Chin. J. Process Eng. 2009, 9, 854–859. [Google Scholar]
- Rewatkar, V.B.; Rao, K.S.M.S.R.; Joshi, J.B. Power consumption in mechanically agitated contactors using pitched bladed turbine impellers. Chem. Eng. Communion 1990, 88, 69–90. [Google Scholar] [CrossRef]
- Gelves, R.; Dietrich, A.; Takors, R. Modeling of Gas-Liquid Mass Transfer in a Stirred Tank Bioreactor Agitated by a Rushton Turbine or a New Pitched Blade Impeller. Bioprocess Biosyst. Eng. 2014, 37, 365–375. [Google Scholar] [CrossRef]
- Yang, F.L.; Zhou, S.J.; An, X.H. Gas–liquid hydrodynamics in a vessel stirred by dual dislocated-blade Rushton impellers. Chin. J. Chem. Eng. 2015, 23, 1746–1754. [Google Scholar] [CrossRef]
- Pinelli, D.; Bakker, A.; Myers, K.J.; Reeder, M.F.; Fasano, J.; Magelli, F. Some Features of a Novel Gas Dispersion Impeller in a Dual-Impeller Configuration. Chem. Eng. Res. Des. 2003, 81, 448–454. [Google Scholar] [CrossRef]
- Labík, L.; Vostal, R.; Moucha, T.; Rejl, F.J.; Kordăc, M. Volumetric Mass Transfer Coefficient in Multiple-Impeller Gas–Liquid Contactors Scaling-Up Study for Various Impeller Types. Chem. Eng. J. 2014, 240, 55–61. [Google Scholar] [CrossRef]
- Bakker, A.; Smith, J.M.; Myers, K.J. How to Disperse Gases in Liquids. Chem. Eng. 1994, 101, 98–102. [Google Scholar]
- Gimbum, R.; Rielly, C.D.; Nagy, Z.K. Modelling of Mass Transfer in Gas-Liquid Stirred Tanks Agitated by Rushton Turbine and CD-6 Impeller: A Scale-Up Study. Chem. Eng. Res. Des. 2009, 87, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Reviol, T.; Ren, H.; Boehle, M. Experimental investigation of the mixing characteristics of non-Newtonian fluids through an ultrasonic Doppler anemometer (UDA). Exp. Therm. Fluid Sci. 2019, 109, 109866. [Google Scholar] [CrossRef]
- Khopkar, A.R.; Ranade, V.V. CFD simulation of gas–liquid stirred vessel: CARPT/CT measurements and CFD simulations. AIChE J. 2005, 52, 1654–1672. [Google Scholar] [CrossRef]
- Taghavi, M.; Zadghaffari, R.; Moghaddas, J.; Moghaddas, Y. Experimental and CFD investigation of power consumption in a dual Rushton turbine stirred tank. Chem. Eng. Res. Des. 2011, 89, 280–290. [Google Scholar] [CrossRef]
- Jamshed, A.; Cooke, M.; Ren, Z.; Rodgers, T.L. Gas-Liquid mixing in dual agitated vessels in the heterogeneous regime. Chem. Eng. Res. Des. 2018, 33, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Coroneo, M.; Montante, G.; Paglianti, A.; Magelli, F. CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations. Comput. Chem. Eng. 2011, 35, 1959–1968. [Google Scholar] [CrossRef]
- Zhang, H.; Sayyar, A.; Wang, Y.; Wang, T. Generality of the CFD-PBM coupled model for bubble column simulation. Chem. Eng. Sci. 2020, 219, 115514. [Google Scholar] [CrossRef]
- Amiraftabi, M.; Khiadani, M.; Mohammed, H.A.; Arshad, A. CFD-PBM and experimental investigation of a shear thinning fluid in a gas-liquid tank agitated by a helical ribbon impeller. Sep. Purif. Technol. 2021, 272, 118855. [Google Scholar] [CrossRef]
Curved-Blade Rushton Turbine (CRT) | ||||
---|---|---|---|---|
Impeller Parameters | Vessel Parameters | |||
[m] | 0.114 | [m3] | 0.011 | |
[m] | 0.023 | [m] | 0.190 | |
[m] | 0.002 | [-] | 0.600 | |
[m] | 0.043 | 2.000 | ||
[°] | 49.3 | 0.550 |
C1,2,3 [Ma-%] | K1,2,3 [Pa·sm] | m1,2,3 [-] | ρ1,2,3 [kg·m3] | |||
---|---|---|---|---|---|---|
Rheo1 | 0.62 | 1.75 | 0.464 | 0.02 | 0.79 | 1004 |
Rheo2 | 0.85 | 4.99 | 0.388 | 0.03 | 2.87 | 1005 |
Rheo3 | 1.25 | 15.34 | 0.325 | 0.14 | 11.98 | 1010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Wang, P.; Du, D.; Si, Q. The Effect of the Spargers Design on the Wastewater Treatment of Gas-Liquid Dispersion Process in a Stirred Tank. Entropy 2022, 24, 357. https://doi.org/10.3390/e24030357
Zheng Z, Wang P, Du D, Si Q. The Effect of the Spargers Design on the Wastewater Treatment of Gas-Liquid Dispersion Process in a Stirred Tank. Entropy. 2022; 24(3):357. https://doi.org/10.3390/e24030357
Chicago/Turabian StyleZheng, Zhi, Peng Wang, Daolin Du, and Qiaorui Si. 2022. "The Effect of the Spargers Design on the Wastewater Treatment of Gas-Liquid Dispersion Process in a Stirred Tank" Entropy 24, no. 3: 357. https://doi.org/10.3390/e24030357