Energy Storage for Water Desalination Systems Based on Renewable Energy Resources
Abstract
:1. Introduction
2. Desalination Systems Based on Renewable Energy Resources
3. Energy Storage for Water Desalination
4. Water and Energy Sustainability
5. Applications of WD-Based RERs Combined with ESSs
5.1. Solar Energy
5.1.1. Photovoltaic (PV)
5.1.2. Solar Collectors
5.1.3. Solar Still
5.2. Wind Energy Resources
5.3. Geothermal Energy Resources
- ▪ Geothermal energy resources which have a high capacity factor, which is known as the source availability in terms of quality and quantity, provide a reliable and stable heat supply, maintaining the stability of thermal WDSs as well as RO-WDSs;
- ▪ The technology of geothermal production is mature, and it is uninfluenced by weather fluctuations and seasonal changes;
- ▪ Typical temperatures of the geothermal resources in most parts around the world are between 70 and 90 °C, which are typical for MED-WDSs at low temperatures;
- ▪ Geothermal WDSs are cost-effective for simultaneously producing power and desalinated water;
- ▪ Geothermal WDSs save fossil fuels, which can be utilized for other goals of enhancing environmental sustainability and national energy security;
- ▪ Geothermal energy resources have a relatively low land surface area per MW compared with the available RERs.
5.4. Tidal Energy Systems
5.5. Hybridization Energy Resources
6. Barriers and Challenges
- ▪ Increasing the awareness of design, installation, operation, and maintenance through intensive training via international activities;
- ▪ Appropriate investment motivation to widen the market for renewable energy devices by lowering the prices of system components;
- ▪ Implementations of RERs for WDSs are still not steady in view of the remarkable yearly and daily variations of the available energy;
- ▪ Using WDSs combining ESS based on PCM with low phase-change temperature for weather conditions of low incident solar intensity is not effective;
- ▪ Planning, selecting, sizing, and optimizing the energy resources for WDSs in combination with energy storage depend on various parameters, including the site location that is changed from one application to another;
- ▪ PVs are still a non-competitive choice for installing hybrid WDSs. However, PV patterns match the needs of daily water consumption well, and these units are predicted to become the fundamental component of hybrid WDSs in the forthcoming period with reductions in their investment costs;
- ▪ The development of WD technologies powered by the tidal energy resource is at its beginning, and further investigations are required prior to obtaining fully operational systems. Additionally, designing and optimizing the geometry of tidal turbines hybridized with different energy resources should be implemented;
- ▪ Considerable investigations should be dedicated to the system control and potentials of RERs for WDSs; however, it should be beneficial to more profoundly to study the RER-powered WDSs utilizing exergoeconomic analysis;
- ▪ Further implementation is required for composite fiber membranes that can be physically deformed at high pressure for PRO with appropriate energy storage systems, considering the feasibility aspects.
7. Encouraging Policies for Future Work
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
CAES | compressed air energy storage |
CSC | concentrated solar collectors |
ED | electrodialysis |
ESS | energy storage system |
FC | fuel cell |
GOR | gained output ratio |
HDH | Humidification–dehumidification |
LCOW | levelized cost of water |
LHS | latent heat storage |
LNG | liquefied natural gas |
MED | multi-effect distillation |
MSF | multi-stage flash |
MVC | mechanical vapor compression |
NePCM | nano-enhanced phase-change material |
ORC | organic Rankin cycle |
PCM | phase-change material |
PV | photovoltaic |
RER | renewable energy resource |
RO | reverse osmosis |
PRO | pressure retarded osmosis |
SDGs | sustainable development goals |
SHS | sensible heat storage |
SHS | solar high-speed |
SS | solar stills |
TES | thermal energy storage |
TVC | thermal vapor compression |
VC | vapor compression |
WD | water desalination |
WDP | water desalination process |
WHO | World Health Organization |
References
- Mohamed, A.S.A.; Ahmed, M.S.; Maghrabie, H.M.; Shahdy, A.G. Desalination Process Using Humidification–Dehumidification Technique: A Detailed Review. Int. J. Energy Res. 2020, 45, 3698–3749. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Huang, P.; Wang, X.; Wang, S. Risk Evaluation of Large-Scale Seawater Desalination Projects Based on an Integrated Fuzzy Comprehensive Evaluation and Analytic Hierarchy Process Method. Desalination 2020, 478, 114286. [Google Scholar] [CrossRef]
- Cohen, Y. Advances in Water Desalination Technologies; World Scientific: Singapore, 2021. [Google Scholar]
- El-Dessouky, H.T.; Ettouney, H.M. Fundamentals of Salt Water Desalination; Elsevier Science, B.V.: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Shi, J.; Gong, L.; Zhang, T.; Sun, S. Study of the Seawater Desalination Performance by Electrodialysis. Membranes 2022, 12, 767. [Google Scholar] [CrossRef]
- Mabrouk, A.N.A. Technoeconomic Analysis of Once through Long Tube MSF Process for High Capacity Desalination Plants. Desalination 2013, 317, 84–94. [Google Scholar] [CrossRef]
- Ammar, Y.; Joyce, S.; Norman, R.; Wang, Y.; Roskilly, A.P. Low Grade Thermal Energy Sources and Uses from the Process Industry in the UK. Appl. Energy 2012, 89, 3–20. [Google Scholar] [CrossRef]
- Rahimi, B.; Marvi, Z.; Alamolhoda, A.A.; Abbaspour, M.; Chua, H.T. An Industrial Application of Low-Grade Sensible Waste Heat Driven Seawater Desalination: A Case Study. Desalination 2019, 470, 114055. [Google Scholar] [CrossRef]
- Likhachev, D.S.; Li, F.-C. Large-Scale Water Desalination Methods: A Review and New Perspectives. Desalin. Water Treat. 2013, 51, 2836–2849. [Google Scholar] [CrossRef]
- Adham, S.; Hussain, A.; Minier-Matar, J.; Janson, A.; Sharma, R. Membrane Applications and Opportunities for Water Management in the Oil & Gas Industry. Desalination 2018, 440, 2–17. [Google Scholar]
- Siddiqi, A.; Kajenthira, A.; Anadón, L.D. Bridging Decision Networks for Integrated Water and Energy Planning. Energy Strateg. Rev. 2013, 2, 46–58. [Google Scholar] [CrossRef]
- Gleick, P.H. Water and Energy. Annu. Rev. Energy Environ. 1994, 19, 267–299. [Google Scholar] [CrossRef]
- McMahon, J.E.; Price, S.E. Water and Energy Interactions. Annu. Rev. Environ. Resour. 2011, 36, 163–191. [Google Scholar] [CrossRef] [Green Version]
- Tayyeban, E.; Deymi-Dashtebayaz, M.; Dadpour, D. Multi Objective Optimization of MSF and MSF-TVC Desalination Systems with Using the Surplus Low-Pressure Steam (an Energy, Exergy and Economic Analysis). Comput. Chem. Eng. 2022, 160, 107708. [Google Scholar] [CrossRef]
- Santhosh, A.; Farid, A.M.; Youcef-Toumi, K. Real-Time Economic Dispatch for the Supply Side of the Energy-Water Nexus. Appl. Energy 2014, 122, 42–52. [Google Scholar] [CrossRef]
- Lawal, D.U.; Qasem, N.A.A. Humidification-Dehumidification Desalination Systems Driven by Thermal-Based Renewable and Low-Grade Energy Sources: A Critical Review. Renew. Sustain. Energy Rev. 2020, 125, 109817. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Seawater Desalination Using Renewable Energy Sources. Prog. Energy Combust. Sci. 2005, 31, 242–281. [Google Scholar] [CrossRef]
- Elminshawy, N.A.S.; Siddiqui, F.R.; Addas, M.F. Development of an Active Solar Humidification-Dehumidification (HDH) Desalination System Integrated with Geothermal Energy. Energy Convers. Manag. 2016, 126, 608–621. [Google Scholar] [CrossRef]
- Shemer, H.; Semiat, R. Sustainable RO Desalination—Energy Demand and Environmental Impact. Desalination 2017, 424, 10–16. [Google Scholar] [CrossRef]
- Dimitriou, E.; Mohamed, E.S.; Karavas, C.; Papadakis, G. Experimental Comparison of the Performance of Two Reverse Osmosis Desalination Units Equipped with Different Energy Recovery Devices. Desalin. Water Treat. 2015, 55, 3019–3026. [Google Scholar] [CrossRef]
- Peñate, B.; Castellano, F.; Bello, A.; García-Rodríguez, L. Assessment of a Stand-Alone Gradual Capacity Reverse Osmosis Desalination Plant to Adapt to Wind Power Availability: A Case Study. Energy 2011, 36, 4372–4384. [Google Scholar] [CrossRef]
- Armendáriz-Ontiveros, M.M.; Dévora-Isiordia, G.E.; Rodríguez-López, J.; Sánchez-Duarte, R.G.; Álvarez-Sánchez, J.; Villegas-Peralta, Y.; del Rosario Martínez-Macias, M. Effect of Temperature on Energy Consumption and Polarization in Reverse Osmosis Desalination Using a Spray-Cooled Photovoltaic System. Energies 2022, 15, 7787. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Mahariq, I.; Murshid, N.; Wongwises, S.; Mahian, O.; Nazari, M.A. Applying Wind Energy as a Clean Source for Reverse Osmosis Desalination: A Comprehensive Review. Alexandria Eng. J. 2022, 61, 12977–12989. [Google Scholar] [CrossRef]
- He, L.; Jiang, A.; Huang, Q.; Zhao, Y.; Li, C.; Wang, J.; Xia, Y. Modeling and Structural Optimization of MSF-RO Desalination System. Membranes 2022, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Manesh, M.H.K.; Kabiri, S.; Yazdi, M. Integration of MED-RO and MSF-RO Desalination with a Combined Cycle Power Plant. Desalin. Water Treat. 2020, 179, 106–129. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ghaffour, N.; Ng, K.C. A Multi Evaporator Desalination System Operated with Thermocline Energy for Future Sustainability. Desalination 2018, 435, 268–277. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ng, K.C. Pushing Desalination Recovery to the Maximum Limit: Membrane and Thermal Processes Integration. Desalination 2017, 416, 54–64. [Google Scholar] [CrossRef]
- Manesh, M.H.K.; Kabiri, S.; Yazdi, M. Exergoenvironmental Analysis and Evaluation of Coupling MSF, MED and RO Desalination Plants with a Combined Cycle Plant. Int. J. Exergy 2020, 33, 76–97. [Google Scholar] [CrossRef]
- Kim, Y.C.; Elimelech, M. Potential of Osmotic Power Generation by Pressure Retarded Osmosis Using Seawater as Feed Solution: Analysis and Experiments. J. Memb. Sci. 2013, 429, 330–337. [Google Scholar] [CrossRef]
- Obode, E.I.; Badreldin, A.; Adham, S.; Castier, M.; Abdel-Wahab, A. Techno-Economic Analysis towards Full-Scale Pressure Retarded Osmosis Plants. Energies 2023, 16, 325. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X. Forward Osmosis Technology for Water Treatment: Recent Advances and Future Perspectives. J. Clean. Prod. 2021, 280, 124354. [Google Scholar] [CrossRef]
- Segurado, R.; Costa, M.; Duić, N.; Carvalho, M.G. Integrated Analysis of Energy and Water Supply in Islands. Case Study of S. Vicente, Cape Verde. Energy 2015, 92, 639–648. [Google Scholar] [CrossRef]
- Ghaffour, N.; Lattemann, S.; Missimer, T.; Ng, K.C.; Sinha, S.; Amy, G. Renewable Energy-Driven Innovative Energy-Efficient Desalination Technologies. Appl. Energy 2014, 136, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- García-Rodríguez, L.; Palmero-Marrero, A.I.; Gómez-Camacho, C. Comparison of Solar Thermal Technologies for Applications in Seawater Desalination. Desalination 2002, 142, 135–142. [Google Scholar] [CrossRef]
- Gude, G.G. Renewable Energy Powered Desalination Handbook: Application and Thermodynamics; Butterworth-Heinemann: Oxford, UK, 2018. [Google Scholar]
- Dinker, A.; Agarwal, M.; Agarwal, G.D. Heat Storage Materials, Geometry and Applications: A Review. J. Energy Inst. 2017, 90, 1–11. [Google Scholar] [CrossRef]
- Dincer, I.; Dost, S. A Perspective on Thermal Energy Storage Systems for Solar Energy Applications. Int. J. Energy Res. 1996, 20, 547–557. [Google Scholar] [CrossRef]
- Aneke, M.; Wang, M. Energy Storage Technologies and Real Life Applications—A State of the Art Review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, V.K.; Shukla, S.K.; Rathore, P.K.S. A Systematic Review for Performance Augmentation of Solar Still with Heat Storage Materials: A State of Art. J. Energy Storage 2022, 47, 103578. [Google Scholar] [CrossRef]
- Dincer, I. On Thermal Energy Storage Systems and Applications in Buildings. Energy Build. 2002, 34, 377–388. [Google Scholar] [CrossRef]
- Herrmann, U.; Kearney, D.W. Survey of Thermal Energy Storage for Parabolic trough Power Plants. J. Sol. Energy Eng. Trans. ASME 2002, 124, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Jana, K.; Ray, A.; Majoumerd, M.M.; Assadi, M.; De, S. Polygeneration as a Future Sustainable Energy Solution—A Comprehensive Review. Appl. Energy 2017, 205, 88–111. [Google Scholar] [CrossRef]
- Nedjalkov, A.; Meyer, J.; Köhring, M.; Doering, A.; Angelmahr, M.; Dahle, S.; Sander, A.; Fischer, A.; Schade, W. Toxic Gas Emissions from Damaged Lithium Ion Batteries—Analysis and Safety Enhancement Solution. Batteries 2016, 2, 5. [Google Scholar] [CrossRef]
- Zhao, R.; Gu, J.; Liu, J. Performance Assessment of a Passive Core Cooling Design for Cylindrical Lithium-Ion Batteries. Int. J. Energy Res. 2018, 42, 2728–2740. [Google Scholar] [CrossRef]
- Sun, H.; Yu, M.; Li, Q.; Zhuang, K.; Li, J.; Almheiri, S.; Zhang, X. Characteristics of Charge/Discharge and Alternating Current Impedance in All-Vanadium Redox Flow Batteries. Energy 2019, 168, 693–701. [Google Scholar] [CrossRef]
- Weng, G.-M.; Li, C.-Y.V.; Chan, K.-Y. Three-Electrolyte Electrochemical Energy Storage Systems Using Both Anion- and Cation-Exchange Membranes as Separators. Energy 2019, 167, 1011–1018. [Google Scholar] [CrossRef]
- Huskinson, B.; Marshak, M.P.; Suh, C.; Er, S.; Michael, R.; Gerhardt, C.J.G.; Xudong Chen, A.A.-G.; Gordon, R.G.; Aziz, M.J. A Metal-Free Organic–Inorganic Aqueous Flow Battery. Nature 2014, 505, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chan, S.H.; Ho, H.K.; Tan, S.-C.; Li, M.; Li, G.; Li, J.; Feng, Z. Towards a Smart Energy Network: The Roles of Fuel/Electrolysis Cells and Technological Perspectives. Int. J. Hydrogen Energy 2015, 40, 6866–6919. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Katterbauer, K.; Shehri, A.A.; Sun, S.; Hoteit, I. Phase Equilibrium in the Hydrogen Energy Chain. Fuel 2022, 328, 125324. [Google Scholar] [CrossRef]
- Olabi, A.G.; Shehata, N.; Maghrabie, H.M.; Heikal, L.A.; Abdelkareem, M.A.; Rahman, S.M.A.; Shah, S.K.; Sayed, E.T. Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals. Energies 2022, 15, 9501. [Google Scholar] [CrossRef]
- Asadi, M.; Deymi-Dashtebayaz, M.; Alavi, S. Emergy and Eco-Exergy Analysis of Different Scenarios in Waste Heat Recovery Applications for Electricity and Fresh Water Generation. J. Therm. Anal. Calorim. 2022, 147, 9625–9643. [Google Scholar] [CrossRef]
- Tayyeban, E.; Deymi-Dashtebayaz, M.; Gholizadeh, M. Investigation of a New Heat Recovery System for Simultaneously Producing Power, Cooling and Distillate Water. Energy 2021, 229, 120775. [Google Scholar] [CrossRef]
- Gude, V.G.; Nirmalakhandan, N.; Deng, S. Renewable and Sustainable Approaches for Desalination. Renew. Sustain. Energy Rev. 2010, 14, 2641–2654. [Google Scholar] [CrossRef]
- Spiegler, K.S. Salt-Water Purification; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Spiegler, K.S.; El-Sayed, Y.M.; Primer, A.D. A Desalination Primer; Balaban Desalination Publications: Santa Maria Imbaro, Italy, 1994. [Google Scholar]
- Johansson, T.B.; Kelly, H.; Reddy, A.K.N.; Williams, R.H. Renewable Energy: Sources for Fuels and Electricity; Island Press: Washington, DC, USA, 1993. [Google Scholar]
- Abdelmoez, W.; Mahmoud, M.S.; Farrag, T.E. Water Desalination Using Humidification/Dehumidification (HDH) Technique Powered by Solar Energy: A Detailed Review. Desalin. Water Treat. 2014, 22, 25–27. [Google Scholar] [CrossRef]
- Namin, A.S.; Rostamzadeh, H.; Nourani, P. Thermodynamic and Thermoeconomic Analysis of Three Cascade Power Plants Coupled with RO Desalination Unit, Driven by a Salinity-Gradient Solar Pond. Therm. Sci. Eng. Prog. 2020, 18, 100562. [Google Scholar] [CrossRef]
- Gude, V.G. Energy Storage for Desalination Processes Powered by Renewable Energy and Waste Heat Sources. Appl. Energy 2015, 137, 877–898. [Google Scholar] [CrossRef]
- Santosh, R.; Arunkumar, T.; Velraj, R.; Kumaresan, G. Technological Advancements in Solar Energy Driven Humidification-Dehumidification Desalination Systems—A Review. J. Clean. Prod. 2019, 207, 826–845. [Google Scholar] [CrossRef]
- Lacroix, C.; Perier-Muzet, M.; Stitou, D. Dynamic Modeling and Preliminary Performance Analysis of a New Solar Thermal Reverse Osmosis Desalination Process. Energies 2019, 12, 4015. [Google Scholar] [CrossRef] [Green Version]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for Desalination: A State-of-the-Art Review. Desalination 2020, 491, 114569. [Google Scholar] [CrossRef]
- Ullah, I.; Rasul, M.G. Recent Developments in Solar Thermal Desalination Technologies: A Review. Energies 2019, 12, 119. [Google Scholar] [CrossRef] [Green Version]
- Maghrabie, H.M.; Abdelkareem, M.A.; Al-Alami, A.H.; Ramadan, M.; Mushtaha, E.; Wilberforce, T.; Olabi, A.G. State-of-the-Art Technologies for Building-Integrated Photovoltaic Systems. Buildings 2021, 11, 383. [Google Scholar] [CrossRef]
- Boesch, W.W. World’s First Solar Powered Reverse Osmosis Desalination Plant. Desalination 1982, 41, 233–237. [Google Scholar] [CrossRef]
- Khatib, T.; Ibrahim, I.A.; Mohamed, A. A Review on Sizing Methodologies of Photovoltaic Array and Storage Battery in a Standalone Photovoltaic System. Energy Convers. Manag. 2016, 120, 430–448. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Papadakis, G. Design, Simulation and Economic Analysis of a Stand-Alone Reverse Osmosis Desalination Unit Powered by Wind Turbines and Photovoltaics. Desalination 2004, 164, 87–97. [Google Scholar] [CrossRef]
- Salameh, T.; Kumar, P.P.; Olabi, A.G.; Obaideen, K.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Best Battery Storage Technologies of Solar Photovoltaic Systems for Desalination Plant Using the Results of Multi Optimization Algorithms and Sustainable Development Goals. J. Energy Storage 2022, 55, 105312. [Google Scholar] [CrossRef]
- Suleimani, Z.A.; Nair, V.R. Desalination by Solar-Powered Reverse Osmosis in a Remote Area of the Sultanate of Oman. Appl. Energy 2000, 65, 367–380. [Google Scholar] [CrossRef]
- Herold, D.; Neskakis, A. A Small PV-Driven Reverse Osmosis Desalination Plant on the Island of Gran Canaria. Desalination 2011, 137, 285–292. [Google Scholar] [CrossRef]
- Fiorenza, G.; Sharma, V.K.; Braccio, G. Techno-Economic Evaluation of a Solar Powered Water Desalination Plant. Energy Convers. Manag. 2003, 44, 2217–2240. [Google Scholar] [CrossRef]
- Ganora, D.; Dorati, C.; Huld, T.A.; Udias, A.; Pistocchi, A. An Assessment of Energy Storage Options for Large-Scale PV-RO Desalination in the Extended Mediterranean Region. Nature 2019, 9, 16234. [Google Scholar] [CrossRef] [Green Version]
- Al-Karaghouli, A.; Renne, D.; Kazmerski, L.L. Technical and Economic Assessment of Photovoltaic-Driven Desalination Systems. Renew. Energy 2010, 35, 323–328. [Google Scholar] [CrossRef]
- Tafech, A.; Milani, D.; Abbas, A. Water Storage Instead of Energy Storage for Desalination Powered by Renewable Energy—King Island Case Study. Energies 2016, 9, 839. [Google Scholar] [CrossRef] [Green Version]
- Calise, F.; Cappiello, F.L.; Vanoli, R.; Vicidomini, M. Economic Assessment of Renewable Energy Systems Integrating Photovoltaic Panels, Seawater Desalination and Water Storage. Appl. Energy 2019, 253, 113575. [Google Scholar] [CrossRef]
- Karavas, C.S.; Arvanitis, K.G.; Papadakis, G. Optimal Technical and Economic Configuration of Photovoltaic Powered Reverse Osmosis Desalination Systems Operating in Autonomous Mode. Desalination 2019, 466, 97–106. [Google Scholar] [CrossRef]
- Ajiwiguna, T.A.; Lee, G.-R.; Lim, B.-J.; Choi, S.-M.; Park, C.-D. Design Strategy and Economic Analysis on Various Configurations of Stand-Alone PV-RO Systems. Desalination 2022, 526, 115547. [Google Scholar] [CrossRef]
- Rezk, H.; Sayed, E.T.; Al-Dhaifallah, M.; Obaid, M.; El-Sayed, A.H.M.; Abdelkareem, M.A.; Olabi, A.G. Fuel Cell as an Effective Energy Storage in Reverse Osmosis Desalination Plant Powered by Photovoltaic System. Energy 2019, 175, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.; Alcanzare, M.; Eugene Esparcia, J.; Ocon, J. A Comparative Techno-Economic Analysis of Different Desalination Technologies in Off-Grid Islands. Energies 2020, 13, 2261. [Google Scholar] [CrossRef]
- De Winter, F. Solar Collectors, Energy Storage, and Materials; The MIT Press: London, UK, 1990. [Google Scholar]
- Lovegrove, K.; Stein, W. Concentrating Solar Power Technology: Principles, Developments, and Applications; Woodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Zhang, H.L.; Baeyens, J.; Degrève, J.; Cacères, G. Concentrated Solar Power Plants: Review and Design Methodology. Renew. Sustain. Energy Rev. 2013, 22, 466–481. [Google Scholar] [CrossRef]
- Moharram, N.A.; Bayoumi, S.; Hanafy, A.A.; El-Maghlany, W.M. Techno-Economic Analysis of a Combined Concentrated Solar Power and Water Desalination Plant. Energy Convers. Manag. 2021, 228, 113629. [Google Scholar] [CrossRef]
- Gude, V.G.; Nirmalakhandan, N.; Deng, S.; Maganti, A. Low Temperature Desalination Using Solar Collectors Augmented by Thermal Energy Storage. Appl. Energy 2012, 91, 466–474. [Google Scholar] [CrossRef]
- Bacha, H.B.; Dammak, T.; Abdalah, A.A.B.; Maalej, A.Y.; Dhia, H. Ben Desalination Unit Coupled with Solar Collectors and a Storage Tank: Modelling and Simulation. Desalination 2007, 206, 341–352. [Google Scholar] [CrossRef]
- Chen, Q.; Alrowais, R.; Burhan, M.; Ybyraiymkul, D.; Shahzad, M.W.; Li, Y.; Ng, K.C. A Self-Sustainable Solar Desalination System Using Direct Spray Technology. Energy 2020, 205, 118037. [Google Scholar] [CrossRef]
- Fouda, A.; Nada, S.A.; Mahfouz, A.S.B.; Al-Zahrani, A.; Elattar, H.F. Augmentation of Solar-Assisted Humidification-Dehumidification Water Desalination System Using Heat Recovery and Thermal Energy Storage System. Int. J. Energy Res. 2020, 44, 6631–6650. [Google Scholar] [CrossRef]
- Chandrashekara, M.; Yadav, A. An Experimental Study of the Effect of Exfoliated Graphite Solar Coating with a Sensible Heat Storage and Scheffler Dish for Desalination. Appl. Therm. Eng. 2017, 123, 111–122. [Google Scholar] [CrossRef]
- Gude, V.G.; Nirmalakhandan, N. Combined Desalination and Solar-Assisted Air-Conditioning System. Energy Convers. Manag. 2008, 49, 3326–3330. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Gu, M.; Shen, S.; Cao, G. Thermal and Economic Analyses of Solar Desalination System with Evacuated Tube Collectors. Sol. Energy 2013, 93, 144–150. [Google Scholar] [CrossRef]
- El-Sebaey, M.S.; Ellman, A.; Hegazy, A.; Ghonim, T. Experimental Analysis and CFD Modeling for Conventional Basin-Type Solar Still. Energies 2020, 13, 5734. [Google Scholar] [CrossRef]
- Akash, B.A.; Mohsen, M.S.; Nayfeh, W. Experimental Study of the Basin Type Solar Still under Local Climate Conditions. Energy Convers. Manag. 2000, 41, 883–890. [Google Scholar] [CrossRef]
- Yousefi, H.; Aramesh, M.; Shabani, B. Design Parameters of a Double-Slope Solar Still: Modelling, Sensitivity Analysis, and Optimization. Energies 2021, 14, 480. [Google Scholar] [CrossRef]
- Lafta, A.M.; Amori, K.E. Hydrogel Materials as Absorber for Improving Water Evaporation with Solar Still, Desalination and Wastewater Treatment. Mater. Today Proc. 2022, 60, 1548–1553. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Omara, Z.M.; Essa, F.A.; Abdullah, A.S. Solar Still with Condenser—A Detailed Review. Renew. Sustain. Energy Rev. 2016, 59, 839–857. [Google Scholar] [CrossRef]
- Ho, Z.Y.; Bahar, R.; Koo, C.H. Passive Solar Stills Coupled with Fresnel Lens and Phase Change Material for Sustainable Solar Desalination in the Tropics. J. Clean. Prod. 2022, 334, 130279. [Google Scholar] [CrossRef]
- Shoeibi, S.; Kargarsharifabad, H.; Mirjalily, S.A.A.; Muhammad, T. Solar District Heating with Solar Desalination Using Energy Storage Material for Domestic Hot Water and Drinking Water—Environmental and Economic Analysis. Sustain. Energy Technol. Assess. 2022, 49, 101713. [Google Scholar] [CrossRef]
- Voropoulos, K.; Mathioulakis, E.E.; Belessiotis, V. Solar Stills Coupled with Solar Collectors and Storage Tank—Analytical Simulation and Experimental Validation of Energy Behavior. Sol. Energy 2003, 75, 199–205. [Google Scholar] [CrossRef]
- Yousef, M.S.; Hassan, H. Energy Payback Time, Exergoeconomic and Enviroeconomic Analyses of Using Thermal Energy Storage System with a Solar Desalination System: An Experimental Study. J. Clean. Prod. 2020, 270, 122082. [Google Scholar] [CrossRef]
- Ansari, O.; Asbik, M.; Bah, A.; Arbaoui, A.; Khmou, A. Desalination of the Brackish Water Using a Passive Solar Still with a Heat Energy Storage System. Desalination 2013, 324, 10–20. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelgaied, M. Improving the Performance of Solar Still by Using PCM as a Thermal Storage Medium under Egyptian Conditions. Desalination 2016, 383, 22–28. [Google Scholar] [CrossRef]
- Twidell, J. Renewable Energy Resources; Routledge: London, UK, 2021. [Google Scholar]
- Möllerström, E. Wind Turbines from the Swedish Wind Energy Program and the Subsequent Commercialization Attempts—A Historical Review. Energies 2019, 12, 690. [Google Scholar] [CrossRef] [Green Version]
- Kaldellis, J.K.; Zafirakis, D. The Wind Energy (r) Evolution: A Short Review of a Long History. Renew. Energy 2011, 36, 1887–1901. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Q.; Hu, S.; Xu, H.; Rasmussen, C.N. Review of Energy Storage System for Wind Power Integration Support. Appl. Energy 2015, 137, 545–553. [Google Scholar] [CrossRef]
- Segurado, R.; Madeira, J.F.A.; Costa, M.; Duić, N.; Carvalho, M.G. Optimization of a Wind Powered Desalination and Pumped Hydro Storage System. Appl. Energy 2016, 177, 487–499. [Google Scholar] [CrossRef] [Green Version]
- Duić, N.; Krajačić, G.; da Graça Carvalho, M. RenewIslands Methodology for Sustainable Energy and Resource Planning for Islands. Renew. Sustain. Energy Rev. 2008, 12, 1032–1062. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Peñate-Vera, S.; Rosales-Asensio, E. Sizing of Wind, Solar and Storage Facilities Associated to a Desalination Plant Using Stochastic Optimization. In Cybernetics Approaches in Intelligent Systems: Computational Methods in Systems and Software; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 1, pp. 172–183. [Google Scholar]
- Lai, W.; Ma, Q.; Lu, H.; Weng, S.; Fan, J.; Fang, H. Effects of Wind Intermittence and Fluctuation on Reverse Osmosis Desalination Process and Solution Strategies. Desalination 2016, 395, 17–27. [Google Scholar] [CrossRef]
- Maleki, A.; Pourfayaz, F.; Ahmadi, M.H. Design of a Cost-Effective Wind/Photovoltaic/Hydrogen Energy System for Supplying a Desalination Unit by a Heuristic Approach. Sol. Energy 2016, 139, 666–675. [Google Scholar] [CrossRef]
- Guo, L.; Liu, W.; Li, X.; Liu, Y.; Jiao, B.; Wang, W.; Wang, C.; Li, F. Energy Management System for Stand-Alone Wind-Powered-Desalination Microgrid. IEEE Trans. Smart Grid 2016, 7, 1079–1087. [Google Scholar] [CrossRef]
- Lilas, T.; Dagkinis, I.; Stefanakou, A.-A.; Antonioua, E.; Nikitakos, N.; Maglara, A.; Vatistasb, A. Energy Utilisation Strategy in an Offshore Floating Wind System with Variable Production of Fresh Water and Hybrid Energy Storage. Int. J. Sustain. Energy 2022, 41, 1572–1590. [Google Scholar] [CrossRef]
- Cutajar, C.; Sant, T.; Buhagiar, D.; Farrugia, R.N. Modelling of a Hybrid Floating Wind, Energy Storage and Desalination Unit. In Proceedings of the Offshore Energy and Storage Summit (OSES), Brest, France, 10–12 July 2019; IEEE: Piscataway Township, NJ, USA, 2019; pp. 1–11. [Google Scholar]
- Kotb, K.M.; Elkadeem, M.R.; Khalil, A.; Imam, S.M.; Hamada, M.A.; Sharshir, S.W.; Dán, A. A Fuzzy Decision-Making Model for Optimal Design of Solar, Wind, Diesel-Based RO Desalination Integrating Flow-Battery and Pumped-Hydro Storage: Case Study in Baltim, Egypt. Energy Convers. Manag. 2021, 235, 113962. [Google Scholar] [CrossRef]
- Dincer, I.; Ozturk, M. Geothermal Energy Systems; Elsevier: Cambridge, UK, 2021. [Google Scholar]
- Goosen, M.; Mahmoudi, H.; Ghaffour, N. Water Desalination Using Geothermal Energy. Energies 2010, 3, 1423–1442. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Bian, H.; Liu, C.; Zhang, D.; Yang, Y. Comparison of Geothermal with Solar and Wind Power Generation Systems. Renew. Sustain. Energy Rev. 2015, 42, 1464–1474. [Google Scholar] [CrossRef]
- Gude, V.G. Geothermal Source Potential for Water Desalination–Current Status and Future Perspective. Renew. Sustain. Energy Rev. 2016, 57, 1038–1065. [Google Scholar] [CrossRef]
- Gude, V.G. Geothermal Source for Water Desalination—Challenges and Opportunities; Renewable Energy Powered Desalination Handbook, Butterworth-Heinemann: Oxford, UK, 2018. [Google Scholar]
- Sohani, A.; Delfani, F.; Hosseini, M.; Sayyaadi, H.; Karimi, N.; Li, L.K.B.; Doranehgard, M.H. Dynamic Multi-Objective Optimization Applied to a Solar-Geothermal Multi-Generation System for Hydrogen Production, Desalination, and Energy Storage. Int. J. Hydrogen Energy 2022, 47, 31730–31741. [Google Scholar] [CrossRef]
- Li, H.; Tao, Y.; Zhang, Y.; Fu, H. Two-Objective Optimization of a Hybrid Solar-Geothermal System with Thermal Energy Storage for Power, Hydrogen and Freshwater Production Based on Transcritical CO2 Cycle. Renew. Energy 2022, 183, 51–66. [Google Scholar] [CrossRef]
- Temiz, M.; Dincer, I. Concentrated Solar Driven Thermochemical Hydrogen Production Plant with Thermal Energy Storage and Geothermal Systems. Energy 2021, 219, 119554. [Google Scholar] [CrossRef]
- Gevez, Y.; Dincer, I. Investigation of a New Integrated Energy System with Thermochemical Hydrogen Production Cycle and Desalination. Appl. Therm. Eng. 2022, 203, 117842. [Google Scholar] [CrossRef]
- Ghorbani, B.; Mehrpooya, M.; Ardehali, A. Energy and Exergy Analysis of Wind Farm Integrated with Compressed Air Energy Storage Using Multi-Stage Phase Change Material. J. Clean. Prod. 2020, 259, 120906. [Google Scholar] [CrossRef]
- Mousavi, S.B.; Ahmadi, P.; Pourahmadiyan, A.; Hanafizadeh, P. A Comprehensive Techno-Economic Assessment of a Novel Compressed Air Energy Storage (CAES) Integrated with Geothermal and Solar Energy. Sustain. Energy Technol. Assess. 2021, 47, 101418. [Google Scholar] [CrossRef]
- Pelc, R.; Fujita, R.M. Renewable Energy from the Ocean. Mar. Policy 2002, 26, 471–479. [Google Scholar] [CrossRef]
- Chen, D. Tidal Energy Seawater Desalination System, Power Generation System and Integral Energy Utilization System. U.S. Patent No. 9,024,461, 5 May 2015. [Google Scholar]
- Crerar, A.J.; Pritchard, C.L. Wavepowered Desalination: Experimental and Mathematical Modelling. Desalination 1991, 81, 391–398. [Google Scholar] [CrossRef]
- Crerar, A.J.; Low, R.E.; Pritchard, C.L. Wave Powered Desalination. Desalination 1987, 67, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Hicks, D.C.; Mitcheson, G.R.; Pleass, C.M.; Salevan, J.F. Delbouy: Ocean Wave-Powered Seawater Reverse Osmosis Desalination Systems. Desalination 1989, 73, 81–94. [Google Scholar] [CrossRef]
- García-Rodríguez, L. Seawater Desalination Driven by Renewable Energies: A Review. Desalination 2022, 143, 103–113. [Google Scholar] [CrossRef]
- Bundschuh, J.; Kaczmarczyk, M.; Ghaffour, N.; Tomaszewska, B. State-of-the-Art of Renewable Energy Sources Used in Water Desalination: Present and Future Prospects. Desalination 2021, 508, 115035. [Google Scholar] [CrossRef]
- Greco, F.; Jarquìn-Laguna, A. Simulation of a Horizontal Axis Tidal Turbine for Direct Driven Reverse-Osmosis Desalination. In Advances in Renewable Energies Offshore; Taylor & Francis Group: London, UK, 2018; pp. 181–188. [Google Scholar]
- Delgado-Torres, A.M.; García-Rodríguez, L. Desalination Powered by Hybrid Solar Photovoltaic (PV) and Tidal Range Energy Systems—Future Prospects. In Energy Storage for Multigeneration; Academic Press: Cambridge, MA, USA, 2023; pp. 175–196. [Google Scholar]
- Khanjanpour, M.H.; Javadi, A.A. Optimization of a Horizontal Axis Tidal (HAT) Turbine for Powering a Reverse Osmosis (RO) Desalination System Using Computational Fluid Dynamics (CFD) and Taguchi Method. Energy Convers. Manag. 2021, 231, 113833. [Google Scholar] [CrossRef]
- Delgado-Torres, A.M.; García-Rodríguez, L. Off-Grid SeaWater Reverse Osmosis (SWRO) Desalination Driven by Hybrid Tidal Range/Solar PV Systems: Sensitivity Analysis and Criteria for Preliminary Design. Sustain. Energy Technol. Assess. 2022, 53, 102425. [Google Scholar] [CrossRef]
- Delgado-Torres, A.M.; García-Rodríguez, L.; Moral, M.J. del Preliminary Assessment of Innovative Seawater Reverse Osmosis (SWRO) Desalination Powered by a Hybrid Solar Photovoltaic (PV)—Tidal Range Energy System. Desalination 2020, 477, 114247. [Google Scholar] [CrossRef]
- Dominković, D.F.; Stark, G.; Hodge, B.-M.; Pedersen, A.S. Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island. Energies 2018, 11, 2193. [Google Scholar] [CrossRef] [Green Version]
- Sokolova, E.; Sadeghi, K.; Ghazaie, S.H.; Barsi, D.; Satta, F.; Zunino, P. Feasibility of Hybrid Desalination Plants Coupled with Small Gas Turbine CHP Systems. Energies 2022, 15, 3618. [Google Scholar] [CrossRef]
- Ng, K.C.; Thu, K.; Oh, S.J.; Ang, L.; Shahzad, M.W.; Ismail, A. Bin Recent Developments in Thermally-Driven Seawater Desalination: Energy Efficiency Improvement by Hybridization of the MED and AD Cycles. Desalination 2015, 356, 255–270. [Google Scholar] [CrossRef]
- Guo, S.; Liu, Q.; Sun, J.; Jin, H. A Review on the Utilization of Hybrid Renewable Energy. Renew. Sustain. Energy Rev. 2018, 91, 1121–1147. [Google Scholar] [CrossRef]
- Deymi-Dashtebayaz, M.; Nikitin, A.; Norani, M.; Nikitina, V.; Hekmatshoar, M.; Shein, V. Comparison of Two Hybrid Renewable Energy Systems for a Residential Building Based on Sustainability Assessment and Emergy Analysis. J. Clean. Prod. 2022, 379, 134592. [Google Scholar] [CrossRef]
- Calise, F.; D’Accadia, M.D.; Vanoli, R.; Vicidomini, M. Transient Analysis of Solar Polygeneration Systems Including Seawater Desalination: A Comparison between Linear Fresnel and Evacuated Solar Collectors. Energy 2019, 172, 647–660. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Abdelrasoul, A.; Sheibany, S.; Amini, M.; Salestan, S.K. Renewable Energy-Driven Desalination Opportunities—A Case Study. J. Environ. Manag. 2019, 239, 187–197. [Google Scholar] [CrossRef]
- Sami, S.; Gholizadeh, M.; Dadpour, D.; Deymi-Dashtebayaz, M. Design and Optimization of a CCHDP System Integrated with NZEB from Energy, Exergy and Exergoeconomic Perspectives. Energy Convers. Manag. 2022, 271, 116347. [Google Scholar] [CrossRef]
- Campione, A.; Cipollina, A.; Calise, F.; Tamburini, A.; Galluzzo, M.; Micale, G. Coupling Electrodialysis Desalination with Photovoltaic and Wind Energy Systems for Energy Storage: Dynamic Simulations and Control Strategy. Energy Convers. Manag. 2020, 216, 112940. [Google Scholar] [CrossRef]
- Khan, E.U.; Martin, A.R. Optimization of Hybrid Renewable Energy Polygeneration System with Membrane Distillation for Rural Households in Bangladesh. Energy 2015, 93, 1116–1127. [Google Scholar] [CrossRef]
- Maleki, A. Design and Optimization of Autonomous Solar-Wind-Reverse Osmosis Desalination Systems Coupling Battery and Hydrogen Energy Storage by an Improved Bee Algorithm. Desalination 2018, 435, 221–234. [Google Scholar] [CrossRef]
- Spyrou, I.D.; Anagnostopoulos, J.S. Design Study of a Stand-Alone Desalination System Powered by Renewable Energy Sources and a Pumped Storage Unit. Desalination 2010, 257, 137–149. [Google Scholar] [CrossRef]
- Caldera, U.; Bogdanov, D.; Breyer, C. Local Cost of Seawater RO Desalination Based on Solar PV and Wind Energy: A Global Estimate. Desalination 2016, 385, 207–216. [Google Scholar] [CrossRef]
- Novosel, T.; Ćosić, B.; Krajačić, G.; Duić, N.; Pukšec, T.; Pukšec, T.; Ashhab, M.S.; Ababneh, A.K. The Influence of Reverse Osmosis Desalination in a Combination with Pump Storage on the Penetration of Wind and PV Energy: A Case Study for Jordan. Energy 2014, 76, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, H.R.; Pourrahmani, H.; Yavarinasab, A.; Emadi, M.A.; Hoorfar, M. Exergoeconomic Optimization of a Solar Driven System with Reverse Osmosis Desalination Unit and Phase Change Material Thermal Energy Storages. Energy Convers. Manag. 2019, 199, 112042. [Google Scholar] [CrossRef]
- Goosen, M.F.A.; Mahmoudi, H.; Ghaffour, N. Today’s and Future Challenges in Applications of Renewable Energy Technologies for Desalination. Crit. Rev. Environ. Sci. Technol. 2014, 44, 929–999. [Google Scholar] [CrossRef] [Green Version]
Technology | Thermal | Membrane |
---|---|---|
Mechanism | Evaporation and condensation. | Pressure and concentration gradient driven. |
Applications | HDH, SS, TVC, MED, MSF. | ED, RO. |
Operating temperature | 60–120 °C. | Less than 45 °C. |
Driving force | Gradient of concentration and temperature. | Gradient of temperature and pressure. |
Form of energy required | Steam, waste heat, renewable energy, and limited mechanical power for the pumping processes. | Prime fossil energy or renewable-energy-driven power. |
Thermal Energy Storage | Advantages | Disadvantages | Desalination Applications |
---|---|---|---|
Liquid-state sensible heat materials |
|
| Large-scale units for MED, MVC, MSF, and RO. |
Solid-state sensible heat materials |
|
| Large-scale usage of MED, MVC, MSF, and RO. |
Phase-change material (PCM) |
|
| Large-scale usage for MSF, MED, RO, and MVC. |
Water/steam |
|
| Large-scale units. |
Hot water |
|
| Solar still, HDH, membrane distillation and low-temperature processes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghrabie, H.M.; Olabi, A.G.; Rezk, A.; Radwan, A.; Alami, A.H.; Abdelkareem, M.A. Energy Storage for Water Desalination Systems Based on Renewable Energy Resources. Energies 2023, 16, 3178. https://doi.org/10.3390/en16073178
Maghrabie HM, Olabi AG, Rezk A, Radwan A, Alami AH, Abdelkareem MA. Energy Storage for Water Desalination Systems Based on Renewable Energy Resources. Energies. 2023; 16(7):3178. https://doi.org/10.3390/en16073178
Chicago/Turabian StyleMaghrabie, Hussein M., Abdul Ghani Olabi, Ahmed Rezk, Ali Radwan, Abdul Hai Alami, and Mohammad Ali Abdelkareem. 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources" Energies 16, no. 7: 3178. https://doi.org/10.3390/en16073178
APA StyleMaghrabie, H. M., Olabi, A. G., Rezk, A., Radwan, A., Alami, A. H., & Abdelkareem, M. A. (2023). Energy Storage for Water Desalination Systems Based on Renewable Energy Resources. Energies, 16(7), 3178. https://doi.org/10.3390/en16073178