Urban Tree Species Identification and Carbon Stock Mapping for Urban Green Planning and Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set
Data Collection
2.2. Methodology
2.2.1. Pre-Processing
- = reflectance in the near-infrared band;
- = reflectance in the red band.
2.2.2. Object Based Classification
- Acer campestre;
- Populus nigra;
- Platanus spp.;
- Quercus spp.
- Platanus spp.;
- Quercus spp.;
- Tilia platyphyllos.
2.2.3. Photogrammetric Approach
2.2.4. CS Mapping in QGIS
3. Results
3.1. OBIA Classification Results and Validation
3.2. SfM Approach for H Estimation
- These other studies were done in forestry areas under different environmental conditions;
- In urban areas, the sizes and shapes of the tree crowns are modified at regular intervals;
- In this study, most of the trees were located in the streets, where frequent tree growth does not occur.
3.3. Urban CS Mapping and Validation
4. Discussion
- An estimation of the total benefits of individual dominant tree species considering the total predicted carbon sequestration;
- Understanding the consequences of ensuring adequate plant spacing when planning urban green areas;
- Identifying the most efficient dominant species based on their roles in urban ecology to better utilize the available urban space.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, C.; Li, X. Carbon storage and sequestration by urban forests in Shenyang, China. Urban For. Urban Green. 2012, 11, 121–128. [Google Scholar] [CrossRef]
- Jo, H.K.; Kim, J.Y.; Park, H.M. Carbon reduction and Planning Strategies for Urban Parks in Seoul. Urban For. Urban Green. 2019, 41, 48–54. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and Sequestration by Trees in Urban and Community Areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherson, E.G.; Simpson, J.R. Carbon Dioxide Reduction through Urban Forestry: Guidelines for Professional and Volunteer Tree Planters; US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 1999.
- Gratani, L.; Varone, L.; Bonito, A. Carbon Sequestration of Four Urban Parks in Rome. Urban For. Urban Green. 2016, 19, 184–193. [Google Scholar] [CrossRef]
- Pierdicca, R.; Paolanti, M.; Vaira, R.; Marcheggiani, E.; Malinverni, E.S.; Frontoni, E. Identifying the Use of a Park Based on Clusters of Visitors’ Movements from Mobile Phone Data. J. Spat. Inf. Sci. 2019, 2019, 29–52. [Google Scholar] [CrossRef]
- Gulinck, H.; Marcheggiani, E.; Verhoeve, A.; Bomans, K.; Dewaelheyns, V.; Lerouge, F.; Galli, A. The Fourth Regime of Open Space. Sustainability 2018, 10, 2143. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xie, S.; Zhao, S. Valuing Urban Green Spaces in Mitigating Climate Change: A Citywide Estimate of Aboveground Carbon Stored in Urban Green Spaces of China’s Capital. Glob. Chang. Biol. 2019, 25, 1717–1732. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Alberti, M. Terrestrial Carbon Stocks across a Gradient of Urbanization: A Study of the Seattle, WA Region. Glob. Chang. Biol. 2011, 17, 783–797. [Google Scholar] [CrossRef]
- Chambers, D.; Périé, C.; Casajus, N.; de Blois, S. Challenges in Modelling the Abundance of 105 Tree Species in Eastern North America Using Climate, Edaphic, and Topographic Variables. For. Ecol. Manag. 2013, 291, 20–29. [Google Scholar] [CrossRef]
- Van Ewijk, K.Y.; Randin, C.F.; Treitz, P.M.; Scott, N.A. Predicting Fine-Scale Tree Species Abundance Patterns Using Biotic Variables Derived from LiDAR and High Spatial Resolution Imagery. Remote Sens. 2014, 150, 120–131. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.Y.; Sanesi, G.; Lafortezza, R. Remote Sensing in Urban Forestry: Recent Applications and Future Directions. Remote Sens. 2019, 11, 1144. [Google Scholar] [CrossRef] [Green Version]
- Myeong, S.; Nowak, D.J.; Duggin, M.J.A. Temporal Analysis of Urban Forest Carbon Storage Using Remote Sensing. Remote Sens. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- Pu, R.L. Mapping Urban Forest Tree Species Using IKONOS Imagery: Preliminary Results. Environ. Monit. Assess. 2011, 172, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Imanishi, J.; Sasaki, T.; Ioki, K.; Morimoto, Y. Estimation of Broad-Leaved Canopy Growth in the Urban Forested Area Using Multi-Temporal Airborne LiDAR Datasets. Urban For. Urban Green. 2016, 16, 142–149. [Google Scholar] [CrossRef]
- Tigges, J.; Lakes, T. High Resolution Remote Sensing for Reducing Uncertainties in Urban Forest Carbon Offset Life Cycle Assessments. Carbon Balance Manag. 2017, 12, 17. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Ozelkan, E.; Singh, K.K.; Zhou, J.; Brown, M.R.; Meentemeyer, R.K. Uncertainties in Mapping Forest Carbon in Urban Ecosystems. J. Environ. Manag. 2017, 187, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.K.; Chen, G.; McCarter, J.B.; Meentemeyer, R.K. Effects of LiDAR Point Density and Landscape Context on Estimates of Urban Forest Biomass. ISPRS J. Photogramm. 2015, 101, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Alonzo, M.; McFadden, J.P.; Nowak, D.J.; Roberts, D.A. Mapping Urban Forest Structure and Function Using Hyperspectral Imagery and Lidar Data. Urban For. Urban Green. 2016, 17, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Ko, Y.K.; McPherson, E.G. The Feasibility of Remotely Sensed Data to Estimate Urban Tree Dimensions and Biomass. Urban For. Urban Green. 2016, 16, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Solano, F.; Di Fazio, S.; Modica, G. A Methodology Based on GEOBIA and WorldView-3 Imagery to Derive Vegetation Indices at Tree Crown Detail in Olive Orchards. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101912. [Google Scholar] [CrossRef]
- Modica, G.; Solano, F.; Merlino, A.; Di Fazio, S.; Barreca, F.; Laudari, L.; Fichera, C.R. Using Landsat 8 Imagery in Detecting Cork Oak (Quercus Suber L.) Woodlands: A Case Study in Calabria (Italy). J. Agric. Eng. 2016, 47, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, M.A.M.; Costanzini, S.; Despini, F.; Rossi, P.; Galli, A.; Marcheggiani, E.; Teggi, S.P.; Sensing, R. For the Identification and Characterization of Trees in Urban Areas. J. Phys. 2019, 1249. [Google Scholar] [CrossRef] [Green Version]
- Pu, R.; Landry, S.A. Comparative Analysis of High Resolution IKONOS and WorldView-2 Imagery for Mapping Urban Tree Species. Remote Sens. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Hájek, F. Object-Oriented Classification of Ikonos Satellite Data for the Identification of Tree Species Composition. J. For. Sci. 2006, 52, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.; Quackenbush, L.J. Forest Species Classification and Tree Crown Delineation Using Quickbird Imagery. SPRS 2007, 2007, 7–11. [Google Scholar]
- Mora, B.; Wulder, M.A.; White, J.C. Identifying Leading Species Using Tree Crown Metrics Derived from Very High Spatial Resolution Imagery in a Boreal Forest Environment. Can.J. Remote Sens. 2010, 36, 332–344. [Google Scholar] [CrossRef]
- Sugumaran, R.; Pavuluri, M.K.; Zerr, D. The Use of High-Resolution Imagery for Identification of Urban Climax Forest Species Using Traditional and Rule-Based Classification Approach. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1933–1939. [Google Scholar] [CrossRef]
- Voss, M.; Sugumaran, R. Seasonal Effect on Tree Species Classification in an Urban Environment Using Hyperspectral Data, LiDAR, and an Object-Oriented Approach. Sensors 2008, 8, 3020–3036. [Google Scholar] [CrossRef] [Green Version]
- Carleer, A.; Wolff, E. Exploitation of Very High-Resolution Satellite Data for Tree Species Identification. Photog. Eng. 2004, 70, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Li, M.; Zhang, M. Classification of Dominant Tree Species in An Urban Forest Park Using the Remote Sensing Image of WorldView-2. In Proceedings of the 8th International Congress on Image and Signal Processing, Shenyang, China, 14–16 October 2015. [Google Scholar]
- Katoh, M. Classifying Tree Species in a Northern Mixed Forest Using High-Resolution IKONOS Data. J. For. Resear. 2004, 9, 7–14. [Google Scholar] [CrossRef]
- Zhang, C.; Qiu, F. Mapping Individual Tree Species in an Urban Forest Using Airborne LiDAR Data and Hyperspectral Imagery. Photogramm. Eng. Remote Sens. 2012, 78, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Kong, C.; Kai, X.; Wu, C. Classification and Extraction of Urban Land-Use Information from High-Resolution Image Based on Object Multi-Features. J. China Univ. Geoscien. 2006, 17, 151–157. [Google Scholar] [CrossRef]
- Ikokou, G.B.; Smith, J.A. Technique for Optimal Selection of Segmentation Scale Parameters for Object-Oriented Classification of Urban Scenes. S. Afri. J. Geomat. 2013, 2, 358–369. [Google Scholar]
- Shojanoori, R.; Shafri, H.Z.M.; Mansor, S.; Ismail, M.H. The Use of WorldView-2 Satellite Data in Urban Tree Species Mapping by Object-Based Image Analysis Technique. Sains Malays. 2016, 45, 1025–1034. [Google Scholar]
- Adeline, K.R.M.; Briottet, X.; Paparoditis, N.; Gastellu-Etchegorry, J.P. Material Reflectance Retrieval in Urban Tree Shadows with Physics-Based Empirical Atmospheric Correction. In Proceedings of the Joint Urban Remote Sensing Event, Sao Paulo, Brazil, 21–23 April 2013. [Google Scholar]
- Cho, M.A.; Mathieu, R.; Asner, G.P.; Naidoo, L.; Aardt, J.V.; Ramoelo, A.; Debba, P.; Wessels, K.; Main, R.; Smit, I.P.J.; et al. Mapping Tree Species Composition in South African Savannas Using an Integrated Airborne Spectral and LiDAR System. Remote Sens. 2012, 125, 214–226. [Google Scholar] [CrossRef]
- Forzieri, G.; Tanteri, L.; Moser, G.; Catani, F.M. natural. And Urban Environments Using Airborne Multi-Sensor ADS40--MIVIS--LiDAR Synergies. Int. J. Appl. Earth Obs. 2013, 23, 313–323. [Google Scholar] [CrossRef]
- Hao, Z.; Heng-Jia, S.; Bo-Chun, Y. Application of Hyper Spectral Remote Sensing for Urban Forestry Monitoring in Natural Disaster Zones. In Proceedings of the IEEE International Conference on Computer and Management (CAMAN), Wuhan, China, 19–21 May 2011; pp. 1–4. [Google Scholar]
- Wania, A.; Weber, C. Hyperspectral imagery and Urban Green Observation. Urban Remote Sens. Jt. Event 2007, 1–8. [Google Scholar] [CrossRef]
- Du, P.; Xia, J.; Zhang, W.; Tan, K.; Liu, Y.; Liu, S. Multiple Classifier System for Remote Sensing Image Classification: A Review. Sensors 2012, 12, 4764–4792. [Google Scholar] [CrossRef]
- Gu, H.; Aditya, S.A.; Townsend, P.A. Detection of Gradients of Forest Composition in an Urban Area Using Imaging Spectroscopy. Remote Sens. 2015, 167, 168–180. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, D.; Jing, L.; Shi, P. Shadow Information Recovery in Urban Areas from Very High- Resolution Satellite Imagery. Int. J. Remote Sens. 2007, 28, 3249–3254. [Google Scholar] [CrossRef]
- Adeline, K.R.M.; Chen, M.; Briottet, X.; Pang, S.K.; Paparoditis, N. Shadow Detection in Very High Spatial Resolution Aerial Images: A Comparative Study. ISPRS J. Photog. Remote Sens. 2013, 80, 21–38. [Google Scholar] [CrossRef]
- Pu, R.L.; Landry, S.; Yu, Q.Y. Assessing the Potential of Multi-Seasonal High-Resolution Pleiades Satellite Imagery for Mapping Urban Tree Species. Int. J. Appl. Earth Obs. 2018, 71, 144–158. [Google Scholar] [CrossRef]
- Li, D.; Ke, Y.; Gong, H.; Li, X. Object-Based Urban Tree Species Classification Using Bi-Temporal WorldView-2 and WorldView-3 Images. Remote Sens. 2015, 7, 16917–16937. [Google Scholar] [CrossRef] [Green Version]
- Moskal, L.M.; Styers, D.M.; Halabisky, M. Monitoring Urban Tree Cover Using Object-Based Image Analysis and Public Domain Remotely Sensed Data. Remote Sens. 2011, 3, 2243–2262. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yin, J.; Zhao, J. Extraction of Urban Vegetation from High Resolution Remote Sensing Image. In Proceedings of the International Conference on Computer Design and Applications (ICCDA), Qinhuangdao, China, 25–27 June 2010; Volume 4, pp. 403–406. [Google Scholar]
- Lobo, A.I. segmentation. And Discriminant Analysis for the Identification of Land Cover Units in Ecology. IEEE Trans Geosci. Remote Sens. 1997, 35, 1136–1145. [Google Scholar] [CrossRef]
- Puissant, A.; Rougier, S.; Stumpf, A. Object-Oriented Mapping of Urban Trees Using Random Forest Classifiers. Intern. J. Appl. Earth Obs. Geoinform. 2014, 26, 235–245. [Google Scholar] [CrossRef]
- Shouse, M.; Liang, L.; Fei, S. Identification of Understory Invasive Exotic Plants with Remote Sensing in Urban Forests. Intern. J. Appl. Earth Obs. Geoinform. 2013, 21, 525–534. [Google Scholar] [CrossRef]
- Piermattei, L.; Karel, W.; Wang, D.; Wieser, M.; Mokroš, M.; Surový, P.; Koreň, M.; Tomaštík, J.; Pfeifer, N.; Hollaus, M. Terrestrial Structure from Motion Photogrammetry for Deriving Forest Inventory Data. Remote Sens. 2019, 11, 950. [Google Scholar] [CrossRef] [Green Version]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an Urban Ecosystem Service: Quantifying above-Ground Carbon Storage at a City-Wide Scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef] [Green Version]
- Fritz, A.; Kattenborn, T.; Koch, B. UAV-Based Photogrammetric Point Clouds—Tree Stem Mapping in Open Stands in Comparison to Terrestrial Laser Scanner Point Clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 2013, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Jaakkola, A.; Wang, Y.; Hyyppä, J.; Honkavaara, E.; Liu, J.; Kaartinen, H. The Use of a Hand-Held Camera for Individual Tree 3D Mapping in Forest Sample Plots. Remote Sens. 2014, 6, 6587–6603. [Google Scholar] [CrossRef] [Green Version]
- Morgenroth, J.; Gomez, C. Assessment of Tree Structure Using a 3D Image Analysis Techni—A Proof of Concept. Urban For. Urban Green. 2014, 13, 198–203. [Google Scholar] [CrossRef]
- Wróżyński, R.; Pyszny, K.; Sojka, M.; Przybyła, C.; Murat-Błażejewska, S. Ground Volume Assessment Using’Structure from Motion’photogrammetry with a Smartphone and a Compact Camera. Open Geosci. 2017, 9, 281–294. [Google Scholar] [CrossRef]
- Miller, J.; Morgenroth, J.; Gomez, C. 3D Modelling of Individual Trees Using a Handheld Camera: Accuracy of Height, Diameter and Volume Estimates. Urban For. Urban Green. 2015, 14, 932–940. [Google Scholar] [CrossRef]
- Peterson, E.B.M. Structure-from-Motion Photogrammetry for Three-Dimensional Structure of Lichens and Change over Time. Bryologist 2019, 122, 325–339. [Google Scholar] [CrossRef]
- Panagiotidis, D.; Surový, P.; Kuželka, K. Accuracy of Structure from Motion Models in Comparison with Terrestrial Laser Scanner for the Analysis of DBH and Height Influence on Error Behaviour. J. For. Sci. 2016, 62, 357–365. [Google Scholar] [CrossRef] [Green Version]
- De Eugenio, A.; Fernández-Landa, A.; Merino-de-Miguel, S. Modelos 3D Derivados de Fotogrametría errestre Para La Estimación de Variables de Inventario Forestal. Revsta Teledetección Asoc. Espa. Teledetección 2018, 51, 113–124. [Google Scholar] [CrossRef]
- Tabacchi, G.; Cosmo, D.; Gasparini, L.; Gasparini, P. Aboveground tree volume and Phytomass Prediction Equations for Forest Species in Italy. Eur. J. For. Res. 2011, 130, 911–934. [Google Scholar] [CrossRef]
- Bigi, A.; Ghermandi, G.; Harrison, R.M. Analysis of the Air Pollution Climate at a Background Site in the Po Valley. J. Environ. 2012, 14, 552–563. [Google Scholar] [CrossRef] [Green Version]
- Costanzini, S.; Teggi, S.; Bigi, A.; Ghermandi, G.; Filippini, T.; Malagoli, C.; Vinceti, M. Atmospheric Dispersion Modelling and Spatial Analysis to Evaluate Population Exposure to Pesticides from Farming Processes. Atmosphere 2018, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Bocchiola, D.; Nana, E.; Soncini, A. Impact of Climate Change Scenarios on Crop Yield and Water Footprint of Maize in the Po Valley of Italy. Agric. Water Manag. 2013, 116, 50–61. [Google Scholar] [CrossRef]
- Home—GeoER. Available online: https://geoportale.regione.emilia-romagna.it/it (accessed on 3 March 2020).
- Bossard, M.; Feranec, J.; Corine, O.J. Land Cover Technical Guide—Addendum 2000; European Environment Agency: Copenhagen, Denmark, 2000. [Google Scholar]
- Ab Majid, I.; Latif, Z.A.; Adnan, N.A. Tree Species Classification Using Worldview-3 Data. In Proceedings of the 2016 7th IEEE Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 8 August 2016; pp. 73–76. [Google Scholar]
- Inc., R.S. ENVI User Guide. 2003. Available online: https://books.google.be/books?id=WwnuAAAAMAAJ (accessed on 27 February 2020).
- Brivio, P.; Lechi-Lechi, G.; Zilioli, E. Principi e Metodi Di Telerilevamento; CittaStudi: Milan, Italy, 2006. [Google Scholar]
- Ke, Y.; Quackenbush, L.J.; Im, J. Synergistic Use of QuickBird Multispectral Imagery and LIDAR Data for Object-Based Forest Species Classification. Remote Sens. Environ. 2010, 114, 1141–1154. [Google Scholar] [CrossRef]
- Eeti, L.N.; Buddhiraju, K.M.; Bhattacharya, A. A Single Classifier Using Principal Components vs. Multi-Classifier System: In Landuse-LandCover Classification of WorldView-2 Sensor Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 91. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.; Xie, Z. Classifying a High-Resolution Image of an Urban Area Using Super-Object Information. ISPRS J. Photogram. Remote Sens. 2013, 83, 40–49. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery. Photogram. Engin. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Despini, F.; Teggi, S. Analysis of Temperature Maps of Water Bodies Obtained from ASTER TIR Images. Int. J. Remote Sens. 2013, 34, 3636–3653. [Google Scholar] [CrossRef]
- Zhou, W. An Object-Based Approach for Urban Land Cover Classification: Integrating LiDAR Height and Intensity Data. IEEE Geosc. Rem. Sens. 2013, 10, 928–931. [Google Scholar] [CrossRef]
- Youjing, Z.; Hengtong, R. Identification Scales for Urban Vegetation Classification Using High Spatial Resolution Satellite Data. IEEE Int. Geosci. Remote Sens. Symp. 2007, 1472–1475. [Google Scholar] [CrossRef]
- Flanders, D.; Hall-Beyer, M.; Perverzoff, J. Preliminary Evaluation of ECognition Object- Based Software for Cut Block Delineation and Feature Extraction. Can. J. Remote Sens. 2003, 29, 441–452. [Google Scholar] [CrossRef]
- Definiens AG. ECognition Version 5 Object Oriented Image Analysis User Guide; Definiens Ecognition: Munich, Germany, 2005. [Google Scholar]
- Blanzieri, E.; Melgani, F. Nearest Neighbor Classification of Remote Sensing Images with the Maximal Margin Principle. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1804–1811. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorp. Elsevier 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Castagnetti, C.; Rossi, P.; Capra, A. 3D Reconstruction of Rock Paintings: A Cost-Effective Approach Based on Modern Photogrammetry for Rapidly Mapping Archaeological Findings. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 1. [Google Scholar] [CrossRef] [Green Version]
- Goslee, K.; Walker, S.M.; Grais, A.; Murray, L.; Casarim, F.; Brown, S. Leaf Technicial Guidance Series for the Development of a Forest Carbon Monitoring System for REDD+: Module C-CS: Calculations for Estimating Carbon Stocks; Winrock International: Morrilton, AR, USA, 2010. [Google Scholar]
- Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer. Rome FAO For. Pap. 1986, Volume 134. Available online: https://www.mendeley.com/catalogue/b1fb0fc8-a267-3060-81bf-8aecd572c4e8/?utm_source=desktop&utm_medium=1.19.4&utm_campaign=open_catalog&userDocumentId=%7Bb468e77d-c2aa-48fc-aed0-029115bde0e8%7D (accessed on 27 February 2020).
- Losi, C.J.; Siccama, T.G.; Condit, R.; Morales, J.E. Analysis of Alternative Methods for Estimating Carbon Stock in Young Tropical Plantatiions. For. Ecol. Manag. 2003, 184, 355–368. [Google Scholar] [CrossRef]
- Vashum, K.T.; Jayakumar, S. Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests-a Review. J. Ecosyst. Ecography 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Whittaker, R.H.; Likens, G.E. Carbon in the Biota. In Carbon in the Biosphere, Proceedings of the 24th Brookhaven Symposium in Biology, Upton, NY, USA, 16–18 May 1973; Woodwell, G.M., Pecan, E.V., Eds.; United States Atomic Energy Commission: Washington, DC, USA, 1973; pp. 281–302. [Google Scholar]
- Marklund, L.G.; Schoene, D.I. Global Assessment of Growing Stock, Biomass and Carbon Stock. Forest Resources Assessment Programme Working Paper 106. 2006. Available online: http://www.fao.org/3/a-ah849e.pdf (accessed on 25 February 2020).
- Vicharnakorn, P.; Shrestha, R.P.; Nagai, M.; Salam, A.P.; Kiratiprayoon, S. Carbon Stock Assessment Using Remote Sensing and Forest Inventory Data in Savannakhet, Lao PDR. Remote Sens. 2014, 6, 5452–5479. [Google Scholar] [CrossRef] [Green Version]
- Panel, I. On Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kanniah, K.D.; Muhamad, N.; Kang, C.S. Remote Sensing Assessment of Carbon Storage by Urban Forest. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 1. [Google Scholar] [CrossRef] [Green Version]
- Rahetlah, B.V.; Salgado, P.; Andrianarisoa, B.; Tillard, E.; Razafindrazaka, H.; Le Mezo, L.; Ramalanjaona, V.L. Relationship between Normalized Difference Vegetation Index (NDVI) and Forage Biomass Yield in the Vakinankaratra Region; Livestock Research for Rural Development, Cirad – Agritrop: Madagascar, East Africa, 2014; p. 11. [Google Scholar]
- Goswami, S.; Gamon, J.; Vargas, S.; Tweedie, C. Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for Six Key Plant Species in Barrow, Alaska. PeerJ Prepr. 2015, 19. [Google Scholar] [CrossRef]
- Coelho, A.P.; Rosalen, D.L.; Faria, R.T. Vegetation Indices in the Prediction of Biomass and Grain Yield of White Oat under Irrigation Levels. Pesqui. Agropecuária Trop. 2018, 48, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Jung, M. LecoS-A QGIS Plugin for Automated Landscape Ecology Analysis; University of Copenhagen: Copenhagen, Denmark, 2013. [Google Scholar]
- Gupta, D.L.; Malviya, A.K.; Singh, S. Performance Analysis of Classification Tree Learning Algorithms. Int. J. Comput. Appl. 2012, 1, 55. [Google Scholar]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 3. [Google Scholar] [CrossRef]
- So-In, C.; Mongkonchai, N.; Aimtongkham, P.; Wijitsopon, K.; Rujirakul, K. An Evaluation of Data Mining Classification Models for Network Intrusion Detection. In Proceedings of the 2014 Fourth International Conference on Digital Information and Communication Technology and Its Applications (DICTAP), Bangkok, Thailand, 6–8 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 90–94. [Google Scholar]
- Foody, G. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Photogramm. Rec. 2010, 25, 204–205. [Google Scholar] [CrossRef]
- Helldén, U. A Test of Landsat-2 Imagery and Digital Data for Thematic Mapping: Illustrated by an Environmental Study in Northern Kenya, Lund University. Nat. Geogr. Inst. Report No. 47. 1980. Available online: https://www.semanticscholar.org/paper/A-test-of-landsat-2-imagery-and-digital-data-for-by-Helld%C3%A9n/d7f84b92a8198b293719960a2a33791f7b632326 (accessed on 25 February 2020).
- Matikainen, L.; Karila, K. Segment-Based Land Cover Mapping of a Suburban Area—Comparison of High-Resolution Remotely Sensed Datasets Using Classification Trees and Test Field Points. Remote Sens. 2011, 3, 1777–1804. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Weighted Kappa: Nominal Scale Agreement Provision for Scaled Disagreement or Partial Credit. Psychol. Bull. 1968, 70, 213. [Google Scholar] [CrossRef]
- Banko, G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data and of Methods Including Remote Sensing Data in Forest Inventory; International Institute for Applied Systems Analysis: Laxenburg, Austria, 1998. [Google Scholar]
- San-Miguel-Ayanz, J.; de Rigo, D.; Caudullo, G.; Houston, D.T. (Eds.) European Atlas of Forest Tree Species; Publication Office of the European Union: Luxembourg, 2016. [Google Scholar]
- De Rigo, D.; Enescu, C.M.; Houston, D.T.; Caudullo, G. Populus Nigra in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; p. e0182a4. [Google Scholar]
- Eaton, E.; Caudullo, G.; Oliveira, S.; de Rigo, D. Quercus robur and Quercus Petraea in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; p. e01c6df. [Google Scholar]
- Zecchin, B.; Caudullo, G.; de Rigo, D. Acer Campestre in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; p. e012c65. [Google Scholar]
- Balboa-Murias, M.A.; Rojo, A.; Álvarez, J.G.; Merino, A. Carbon and Nutrient Stocks in Mature Quercus Robur L. Stands in NW Spain Annals of Forest Science. Ann. For. Sci. 2006, 63, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Hjelm, B.; Mola-Yudego, B.; Dimitriou, I.; Johansson, T. Diameter—Height Models for Fast-Growing Poplar Plantations on Agricultural Land in Sweden. BioEnergy Res. 2015, 8, 1759–1768. [Google Scholar] [CrossRef]
- Russo, A.; Escobedo, F.J.; Timilsina, N.; Schmitt, A.O.; Varela, S.; Zerbe, S. Assessing Urban Tree Carbon Storage and Sequestration in Bolzano, Italy. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 54–70. [Google Scholar] [CrossRef]
- Trees and Shrubs Hardy in the British Isles. Vol. IV. Ri-Z. Available online: https://www.cabdirect.org/cabdirect/abstract/19800666681 (accessed on 4 May 2020).
- Laliberte, A.S.; Koppa, J.; Fredrickson, E.L.; Rango, A. Comparison of nearest neighbor and rule-based decision tree classification in an object-oriented environment. Proceedings of IEEE international Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July 2006; pp. 3923–3926. [Google Scholar] [CrossRef]
- Zheng, G.; Moskal, L.M. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [Green Version]
- Franklin, S.E.; Hall, R.J.; Moskal, L.M.; Maudie, A.J.; Lavigne, M.B. Incorporating Texture into Classification of Forest Species Composition from Airborne Multispectral Images. Int. J. Remote Sens. 2000, 21, 61–79. [Google Scholar] [CrossRef]
- Sequestered Standing Carbon Stock in Selective Tree Species Grown in University Campus at Aurangabad, Maharashtra, India. Available online: https://www.researchgate.net/publication/50315368_Sequestered_standing_carbon_stock_in_selective_tree_species_grown_in_University_campus_at_Aurangabad_Maharashtra_India (accessed on 21 August 2020).
- Green Structure and Urban Planning—Final Report. Available online: https://www.cost.eu/publications/green-structure-and-urban-planning-final-report/ (accessed on 17 August 2020).
- Sturiale, L.; Scuderi, A. The Role of Green Infrastructures in Urban Planning for Climate Change Adaptation. Climate 2019, 7, 119. [Google Scholar] [CrossRef] [Green Version]
Bands | Wavelength (nm) |
---|---|
Coastal band | 400–450 |
Blue band | 450–510 |
Green band | 510–580 |
Yellow band | 585–625 |
Red band | 630–690 |
Red edge band | 705–715 |
Near Infrared (NIR)1 band | 770–895 |
Near Infrared (NIR)2 band | 860–1040 |
Segment | Laser Scanning | Photogrammetry | Discrepancy |
---|---|---|---|
(a) | 6.19 m | 6.21 m | 0.02 m |
(b) | 13.21 m | 13.16 m | 0.05 m |
(c) | 10.38 m | 10.45 m | 0.07 m |
(d) | 8.35 m | 8.38 m | 0.03 m |
(e) | 5.38 m | 5.41 m | 0.03 m |
Mean value | 0.04 m |
Populus nigra | Quercus spp. Park | Acer campestre Park | Tilia platyphyllos Street | Platanus spp. Park | Quercus spp. Street | Platanus spp. Street | |
---|---|---|---|---|---|---|---|
PA 1 | 0.87 | 0.79 | 0.68 | 0.63 | 0.81 | 0.70 | 0.82 |
UA 1 | 0.79 | 0.89 | 0.81 | 0.52 | 0.73 | 0.55 | 0.97 |
Hellden | 0.83 | 0.83 | 0.74 | 0.57 | 0.77 | 0.62 | 0.89 |
KIA per Class | 0.83 | 0.71 | 0.65 | 0.59 | 0.78 | 0.68 | 0.79 |
Overall Accuracy | 0.78 | ||||||
KIA | 0.74 |
Tree Species | Mean Height (m) |
---|---|
Quercus spp. | 16.15 |
Acer campestre | 10.14 |
Populus nigra | 29.15 |
Platanus spp. | 18.2 |
Tilia platyphyllos | 12.52 |
Plot ID | Tree Species | Mean CS/plot (Kg) | CS/plot (Kg) Computed in QGIS | Estimation Differences (kg)/plot |
---|---|---|---|---|
1 | Platanus spp. (Street) | 124 | 180 | 55 |
2 | Platanus spp. (Street) | 105 | 207 | 102 |
3 | Platanus spp. (Street) | 655 | 453 | 202 |
4 | Tilia platyphyllos (Street) | 262 | 361 | 99 |
5 | Acer campestre (Park) | 51 | 375 | 324 |
6 | Quercus spp. (Park) | 226 | 374 | 148 |
7 | Populus nigra (Park) | 817 | 289 | 528 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, M.A.M.; Marcheggiani, E.; Despini, F.; Costanzini, S.; Rossi, P.; Galli, A.; Teggi, S. Urban Tree Species Identification and Carbon Stock Mapping for Urban Green Planning and Management. Forests 2020, 11, 1226. https://doi.org/10.3390/f11111226
Choudhury MAM, Marcheggiani E, Despini F, Costanzini S, Rossi P, Galli A, Teggi S. Urban Tree Species Identification and Carbon Stock Mapping for Urban Green Planning and Management. Forests. 2020; 11(11):1226. https://doi.org/10.3390/f11111226
Chicago/Turabian StyleChoudhury, Md Abdul Mueed, Ernesto Marcheggiani, Francesca Despini, Sofia Costanzini, Paolo Rossi, Andrea Galli, and Sergio Teggi. 2020. "Urban Tree Species Identification and Carbon Stock Mapping for Urban Green Planning and Management" Forests 11, no. 11: 1226. https://doi.org/10.3390/f11111226