Hermite–Hadamard, Fejér and Pachpatte-Type Integral Inequalities for Center-Radius Order Interval-Valued Preinvex Functions
(This article belongs to the Section Engineering)
Abstract
:1. Introduction
2. Preliminaries
Basic Properties of Interval-Valued Functions
3. The Concept of Interval Valued --Preinvex function
4. Application of -Preinvexity to Inequalities
5. Future Recommendations Associated with Fractional Integral Operators
- CR-h convex function.
- CR- convex function.
- CR Godunova–Levin Functions.
- CR-Harmonic convex function.
- CR-Harmonially-h convex function.
- CR-Harmonically- convex function.
- CR-Harmonically Godunova–Levin Functions.
- CR-Harmonically -Godunova–Levin Functions.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Merlet, J.P. Interval analysis for certified numerical solution of problems in robotics. Int. J. Appl. Math. Comput. Sci. 2009, 19, 399–412. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Kreinovich, V.; Zuo, Q. Interval-valued degrees of belief: Applications of interval computations to expert systems and intelligent control. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 1997, 5, 317–358. [Google Scholar] [CrossRef]
- Strauss, O.; Rico, A. Towards interval-based non-additive deconvolution in signal processing. Soft Comput. 2012, 16, 809–820. [Google Scholar] [CrossRef]
- Ghosh, D.; Debnath, A.K.; Pedrycz, W. A variable and a fixed ordering of intervals and their application in optimization with interval-valued functions. Internat. J. Approx. Reason 2020, 121, 187–205. [Google Scholar] [CrossRef]
- Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Ed. 2012, 55, 9–15. [Google Scholar] [CrossRef]
- Snyder, J. Interval analysis for computer graphics. SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
- Weerdt, E.; Chu, Q.; Mulder, A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef]
- Zhao, D.F.; Ye, G.J.; Liu, W.; Torres, D.F.M. Some inequalities for interval-valued functions on time scales. Soft Comput. 2019, 23, 6005–6015. [Google Scholar] [CrossRef]
- Shi, F.; Ye, G.; Zhao, D.; Liu, W. Some fractional Hermite-Hadamard type inequalities for interval valued coordinated functions. Adv. Differ. Equ. 2021, 2021, 32. [Google Scholar] [CrossRef]
- Kalsoom, H.; Ali, M.A.; Idrees, M.; Agarwal, P.; Arif, M. New Post Quantum Analogues of Hermite–Hadamard Type Inequalities for Interval-Valued Convex Functions. Math. Prob. Eng. 2021, 2021, 5529650. [Google Scholar] [CrossRef]
- Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2020, 396, 82–101. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K.; Abualnaja, K.M. Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Math. 2022, 7, 15041–15063. [Google Scholar] [CrossRef]
- Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Vivas-Cortez, M. Some New Hermite-Hadamard-Fejér fractional type inequalities for h-convex and harmonically h-Convex interval-valued Functions. Mathematics 2021, 10, 74. [Google Scholar] [CrossRef]
- Costa, T.M.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inform. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Mitroi, F.C.; Nikodem, K.; Wasowicz, S. Hermite-Hadamard inequalities for convex set-valued functions. Demonstratio Math. 2013, 46, 655–662. [Google Scholar] [CrossRef]
- Hadamard, J. Étude sur les propriétés des fonctions entiéres en particulier d’une fonction considéréé par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J.Y. On Hermite-Hadamard inequalities for h-preinvex functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
- Barani, A.; Ghazanfari, G.; Dragomir, S.S. Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. J. Inequal. Appl. 2012, 2012, 247. [Google Scholar] [CrossRef]
- Mishra, S.K.; Giorgi, G. Invexity and Optimization; Springer: Berlin, Germany, 2008. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Öğülmüs, H.; Sarikaya, M.Z. Hermite-Hadamard-Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
- Set, E.; Akdemir, A.O.; Özdemir, M.E. Simpson type integral inequalities for convex functions via Riemann—Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
- Dragomir, S.S. Ostrowski type inequalities for Riemann—Liouville fractional integrals of absolutely continuous functions in terms of norms. RGMIA Res. Rep. Collect. 2017, 20, 49. [Google Scholar]
- Tariq, M.; Ahmad, H.; Sahoo, S.K.; Kashuri, A.; Nofal, T.A.; Hsu, C.H. Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Math. 2022, 7, 15159–15181. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite—Hadamard and Hermite—Hadamard—Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
- Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. J. Inequl. Appl. 2020, 2020, 172. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator. Fractal Fract. 2022, 6, 171. [Google Scholar] [CrossRef]
- Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Set. Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Lodwick, W.A. Condori-Equice. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
- Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
- Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
- An, Y.R.; Ye, G.J.; Zhao, D.F.; Liu, W. Hermite-Hadamard Type Inequalities for Interval (h1, h2)-Convex Functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 2020, 570. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions. Adv. Differ. Equ. 2020, 2020, 507. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2021, 98. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators. Int. J. Comput. Intel. Syst. 2022, 15, 8. [Google Scholar] [CrossRef]
- Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions. Mathematics 2022, 10, 264. [Google Scholar] [CrossRef]
- Bhunia, A.; Samanta, S. A study of interval metric and its application in multi-objective optimization with interval objectives. Comput. Ind. Eng. 2014, 74, 169–178. [Google Scholar] [CrossRef]
- Rahman, M.; Shaikh, A.; Bhunia, A. Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function. Comput. Ind. Eng. 2020, 147, 106634. [Google Scholar] [CrossRef]
- Shi, F.; Ye, G.; Liu, W.; Zhao, D. cr-h-convexity and some inequalities for cr-h-convex function. Filomat 2022. submitted. [Google Scholar]
- Liu, W.; Shi, F.; Ye, G.; Zhao, D. The Properties of Harmonically cr-h-Convex Function and Its Applications. Mathematics 2022, 10, 2089. [Google Scholar] [CrossRef]
- Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef]
- Ben-Isreal, A.; Mond, B. What is invexity? J. Austral. Math. Soc. Ser. B 1986, 28, 1–9. [Google Scholar] [CrossRef]
- Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
- Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef]
- Markov, S. Calculus for interval functions of a real variable. Computing 1979, 22, 325–337. [Google Scholar] [CrossRef]
- Mubeen, S.; Habibullah, G.M. k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, S.K.; Latif, M.A.; Alsalami, O.M.; Treanţă, S.; Sudsutad, W.; Kongson, J. Hermite–Hadamard, Fejér and Pachpatte-Type Integral Inequalities for Center-Radius Order Interval-Valued Preinvex Functions. Fractal Fract. 2022, 6, 506. https://doi.org/10.3390/fractalfract6090506
Sahoo SK, Latif MA, Alsalami OM, Treanţă S, Sudsutad W, Kongson J. Hermite–Hadamard, Fejér and Pachpatte-Type Integral Inequalities for Center-Radius Order Interval-Valued Preinvex Functions. Fractal and Fractional. 2022; 6(9):506. https://doi.org/10.3390/fractalfract6090506
Chicago/Turabian StyleSahoo, Soubhagya Kumar, Muhammad Amer Latif, Omar Mutab Alsalami, Savin Treanţă, Weerawat Sudsutad, and Jutarat Kongson. 2022. "Hermite–Hadamard, Fejér and Pachpatte-Type Integral Inequalities for Center-Radius Order Interval-Valued Preinvex Functions" Fractal and Fractional 6, no. 9: 506. https://doi.org/10.3390/fractalfract6090506
APA StyleSahoo, S. K., Latif, M. A., Alsalami, O. M., Treanţă, S., Sudsutad, W., & Kongson, J. (2022). Hermite–Hadamard, Fejér and Pachpatte-Type Integral Inequalities for Center-Radius Order Interval-Valued Preinvex Functions. Fractal and Fractional, 6(9), 506. https://doi.org/10.3390/fractalfract6090506