On Geometric Properties of Bessel–Struve Kernel Functions in Unit Disc
Abstract
:1. Introduction
1.1. Bessel–Struve Kernel Functions
1.2. Basic Concept of Geometric Properties and Require Lemmas
2. Generalization of Bessel–Struve Kernel Function
3. Geometric Properties of Generalized Bessel–Struve Kernel Functions
3.1. Relation with Lemniscate Class
3.2. Relation with Exponential Class
3.3. Relation with Janowski Class
- (i)
- For , such that and
- (ii)
- For ,
- (iii)
- For ,
- (iv)
- For ,
4. Concluding Remarks and Future Problems
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abramowitz, M.; Stegun, I.A. A Handbook of Mathematical Functions; National Bureau of Standards Applied Mathematics Series No. 55; U. S. Government Printing Office: Washington, DC, USA, 1965. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Encyclopedia of Mathematics and its Applications, 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Baricz, A.; Mondal, S.R.; Swaminathan, A. Monotonicity properties of the Bessel-Struve kernel. Bull. Korean Math. Soc. 2016, 53, 1845–1856. [Google Scholar] [CrossRef] [Green Version]
- Gasmi, A.; Sifi, M. The Bessel-Struve intertwining operator on C and mean-periodic functions. Int. J. Math. Math. Sci. 2004, 57–60, 3171–3185. [Google Scholar] [CrossRef] [Green Version]
- Gasmi, A.; Soltani, F. Fock spaces for the Bessel-Stuve kernel. J. Anal. Appl. 2005, 3, 91–106. [Google Scholar]
- Hamem, S.; Kamoun, L.; Negzaoui, S. Cowling-Price type theorem related to Bessel-Struve transform. Arab J. Math. Sci. 2013, 19, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Kamoun, L.; Sifi, M. Bessel-Struve intertwining operator and generalized Taylor series on the real line. Integral Transforms Spec. Funct. 2005, 16, 39–55. [Google Scholar] [CrossRef]
- Baricz, Á. Generalized Bessel Functions of the First Kind; Lecture Notes in Mathematics, 1994; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Orhan, H.; Yagmur, N. Geometric properties of generalized Struve functions. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 2017, 63, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Baricz, Á. Geometric properties of generalized Bessel functions. Publ. Math. Debr. 2008, 73, 155–178. [Google Scholar]
- Baricz, Á. Geometric properties of generalized Bessel functions of complex order. Mathematica 2006, 48, 13–18. [Google Scholar]
- Baricz, Á.; Ponnusamy, S. Starlikeness and convexity of generalized Bessel functions. Integral Transforms Spec. Funct. 2010, 21, 641–653. [Google Scholar] [CrossRef]
- Baricz, Á.; Szász, R. The radius of convexity of normalized Bessel functions of the first kind. Anal. Appl. 2014, 12, 485–509. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Mondal, S.R.; Mohammed, A.D. Relations between the generalized Bessel functions and the Janowski class. Math. Inequal. Appl. 2018, 21, 165–178. [Google Scholar]
- Mondal, S.R.; Swaminathan, A. Geometric properties of generalized Bessel functions. Bull. Malays. Math. Sci. Soc. 2012, 35, 179–194. [Google Scholar]
- Madaan, V.; Kumar, A.; Ravichandran, V. Lemniscate convexity of generalized Bessel functions. Studia Sci. Math. Hungar. 2019, 56, 404–419. [Google Scholar] [CrossRef]
- Naz, A.; Nagpal, S.; Ravichandran, V. Exponential starlikeness and convexity of confluent hypergeometric, Lommel, and Struve functions. Mediterr. J. Math. 2020, 17, 204. [Google Scholar] [CrossRef]
- Selinger, V. Geometric properties of normalized Bessel functions. Pure Math. Appl. 1995, 6, 273–277. [Google Scholar]
- Szász, R.; Kupán, P.A. About the univalence of the Bessel functions. Stud. Univ. Babeş-Bolyai Math. 2009, 54, 127–132. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. I. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.M.; Ravichandran, V.; Seenivasagan, N. Sufficient conditions for Janowski starlikeness. Int. J. Math. Math. Sci. 2007, 2007, 62925. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.M.; Chandrashekar, R.; Ravichandran, V. Janowski starlikeness for a class of analytic functions. Appl. Math. Lett. 2011, 24, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and inequalities in the complex plane. J. Differ. Equ. 1987, 67, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations; Monographs and Textbooks in Pure and Applied Mathematics, 225; Dekker: New York, NY, USA, 2000. [Google Scholar]
- Madaan, V.; Kumar, A.; Ravichandran, V. Starlikeness associated with lemniscate of Bernoulli. Filomat 2019, 33, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
- Naz, A.; Nagpal, S.; Ravichandran, V. Star-likeness associated with the exponential function. Turkish J. Math. 2019, 43, 1353–1371. [Google Scholar] [CrossRef]
c | 0 | , | , | , | , | |
---|---|---|---|---|---|---|
−4.12198 | −5.59734 | −7.1572 | −8.47739 | −8.75273 | −10.3663 | |
±0.632754 | ±0.601589 | ±0.583525 | ±0.573565 | ±0.57187 | ±0.563755 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarifi, N.M.; Mondal, S.R. On Geometric Properties of Bessel–Struve Kernel Functions in Unit Disc. Mathematics 2022, 10, 2516. https://doi.org/10.3390/math10142516
Alarifi NM, Mondal SR. On Geometric Properties of Bessel–Struve Kernel Functions in Unit Disc. Mathematics. 2022; 10(14):2516. https://doi.org/10.3390/math10142516
Chicago/Turabian StyleAlarifi, Najla M., and Saiful R. Mondal. 2022. "On Geometric Properties of Bessel–Struve Kernel Functions in Unit Disc" Mathematics 10, no. 14: 2516. https://doi.org/10.3390/math10142516
APA StyleAlarifi, N. M., & Mondal, S. R. (2022). On Geometric Properties of Bessel–Struve Kernel Functions in Unit Disc. Mathematics, 10(14), 2516. https://doi.org/10.3390/math10142516