Chitin Research Revisited
Abstract
:1. Introduction
2. Source
3. Structure
4. Chitin Biosynthesis
5. Chitinolytic Enzymes
6. Chitin Binding Proteins
7. Genetic Engineering Approach to Produce Chitin
8. Chitin and Evolution
9. Applications
9.1. Immunology
9.2. Hemostasis and Wound Healing
9.3. Scaffold for the Regeneration of Tissue
9.4. Neuro-Tubes Guided Nerve Regeneration
9.5. Blood Cholesterol Control
9.6. Drug Delivery Carriers
9.7. Antioxidant
9.8. Antimicrobial Activity
9.9. Gene Therapy
9.10. Food Technology
9.11. Agriculture
9.12. Bio-Nanotechnology
9.13. Capacitor and Electrolyte
9.14. Heavy Metals and Other Pollutants Removal
9.15. Intelligent Materials or Composites
9.16. Energy Production: An Emerging Application
10. Chito-Oligosaccharides and Their Applications
11. Conclusion and Future Perspectives
Acknowledgements
References
- Muzzarelli, RAA. Chitin; Pergamon Press: Oxford, UK, 1977. [Google Scholar]
- Jollès, P; Muzzarelli, RAA. Chitin and Chitinases; Birkhäuser Verlag: Basel, Switzerland, 1999. [Google Scholar]
- Jeuniaux, C. Domard, A, Jeuniaux, C, Muzzarelli, RAA, Roberts, G, Eds.; A brief survey of the early contribution of European scientists to chitin knowledge. In Advances in Chitin Sciences; Jacques André Publ: Lyon, France, 1996; pp. 1–9. [Google Scholar]
- Muzzarelli, RAA; Muzzarelli, C. Phillips, GO, Williams, PA, Eds.; Chitin and chitosan hydrogels. In Handbook of Hydrocolloids; Woodhead Publishing Ltd: Cambridge, UK, 2009; pp. 849–888. [Google Scholar]
- Clark, GL; Smith, AF. X-Ray diffraction studies of chitin, chitosan, and derevatives. J. Phys. Chem 1936, 40, 863–879. [Google Scholar]
- Herring, PJ. Marine Ecology and natural products. Pure Appl. Chem 1979, 51, 1901–1911. [Google Scholar]
- Blumenthal, HJ; Roseman, S. Quantitative estimation of chitin in fungi. J. Bacteriol 1957, 74, 222–224. [Google Scholar]
- Wagner, GP; Lo, J; Laine, R; Almeder, M. Chitin in the epidermal cuticle of a vertebrate (Paralipophrys trigloides, Blenniidae, Teleostei). Cell. Mol. Life Sci 1993, 49, 317–319. [Google Scholar]
- Struszczyk, MH. Global requirements for medical applications of chitin and its derivatives. In Polish Chitin Society, Monograph XI; Polish Chitin Society: Łódź, Poland, 2006; pp. 95–102. [Google Scholar]
- Mathur, NK; Narang, CK. Chitin and chitosan, versatile polysaccharides from marine animals. J. Chem. Educ 1990, 67, 938. [Google Scholar]
- Sikorski, P; Hori, R; Wada, M. Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules 2009, 10, 1100–1105. [Google Scholar]
- Atkins, E. Conformations in polysaccharides and complex carbohydrates. J. Biosci 1985, 8, 375–387. [Google Scholar]
- Lavall, RL; Assis, OBG; Campana-Filho, SP. [beta]-Chitin from the pens of Loligo sp.: Extraction and characterization. Bioresour. Technol 2007, 98, 2465–2472. [Google Scholar]
- Mazeau, K; Winter, WT; Chanzy, H. Molecular and crystal structure of a high-temperature polymorph of chitosan from electron diffraction data. Macromolecules 2002, 27, 7606–7612. [Google Scholar]
- Schiffman, JD; Schauer, CL. Solid state characterization of [alpha]-chitin from Vanessa cardui Linnaeus wings. Mater. Sci. Eng. C 2009, 29, 1370–1374. [Google Scholar]
- Rudall, KM; Kenchington, W. The Chitin System. Biol. Rev 1973, 48, 597–633. [Google Scholar]
- Minke, R; Blackwell, J. The structure of [alpha]-chitin. J. Mol. Biol 1978, 120, 167–181. [Google Scholar]
- Mano, JF; Silva, GA; Azevedo, HS; Malafaya, PB; Sousa, RA; Silva, SS; Boesel, LF; Oliveira, JM; Santos, TC; Marques, AP; Neves, NM; Reis, RL. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface 2007, 4, 999–1030. [Google Scholar] [Green Version]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci 2006, 31, 603–632. [Google Scholar]
- Bulawa, CE. Genetics and Molecular Biology of Chitin Synthesis in Fungi. Annu. Rev. Microb 1993, 47, 505–534. [Google Scholar]
- Roncero, C. The genetic complexity of chitin synthesis in fungi. Curr. Genet 2002, 41, 367–378. [Google Scholar]
- Merzendorfer, H. Insect chitin synthases: a review. J. Comp. Physiol. B 2006, 176, 1–15. [Google Scholar]
- Kato, N; Mueller, CR; Fuchs, JF; Wessely, V; Lan, Q; Christensen, BM. Regulatory mechanisms of chitin biosynthesis and roles of chitin in peritrophic matrix formation in the midgut of adult Aedes aegypti. Insect. Biochem. Mol. Biol 2006, 36, 1–9. [Google Scholar]
- Veronico, P; Gray, LJ; Jones, JT; Bazzicalupo, P; Arbucci, S; Cortese, MR; Di Vito, M; De Giorgi, C. Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol. Genet. Genomics 2001, 266, 28–34. [Google Scholar]
- Cohen, E. Chitin synthesis and inhibition: a revisit. Pest Manag. Sci 2001, 57, 946–950. [Google Scholar]
- McMurrough, I; Flores-Carreon, A; Bartnicki-Garcia, S. Pathway of chitin synthesis and cellular localization of chitin synthetase in Mucor rouxii. J. Biol. Chem 1971, 246, 3999–4007. [Google Scholar]
- Kawasaki, T; Tanaka, M; Fujie, M; Usami, S; Sakai, K; Yamada, T. Chitin Synthesis in Chlorovirus CVK2-Infected Chlorella Cells. Virology 2002, 302, 123–131. [Google Scholar]
- Lerouge, P; Roche, P; Faucher, C; Maillet, F; Truchet, G; Prome, JC; Denarie, J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 1990, 344, 781–784. [Google Scholar]
- Semino, CE; Robbins, PW. Synthesis of "Nod"-like chitin oligosaccharides by the Xenopus developmental protein DG42. Proc. Natl. Acad. Sci. USA 1995, 92, 3498–3501. [Google Scholar]
- Semino, CE; Specht, CA; Raimondi, A; Robbins, PW. Homologs of the Xenopus developmental gene DG42 are present in zebrafish and mouse and are involved in the synthesis of Nod-like chitin oligosaccharides during early embryogenesis. Proc. Natl. Acad. Sci. USA 1996, 93, 4548–4553. [Google Scholar]
- Hawtin, RE; Arnold, K; Ayres, MD; Zanotto, PM; Howard, SC; Gooday, GW; Chappell, LH; Kitts, PA; King, LA; Possee, RD. Identification and preliminary characterization of a chitinase gene in the Autographa californica nuclear polyhedrosis virus genome. Virology 1995, 212, 673–685. [Google Scholar]
- Chigaleichik, AG; Pirieva, DA; Rydkin, SS. Chitinase from Serratia marcescens BKM B-851. Prikl. Biokhim. Mikrobiol 1976, 12, 581–586. [Google Scholar]
- Kuranda, MJ; Robbins, PW. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J. Biol. Chem 1991, 266, 19758–19767. [Google Scholar]
- Sakuda, S; Isogai, A; Matsumoto, S; Suzuki, A. Search for microbial insect growth regulators. II. Allosamidin, a novel insect chitinase inhibitor. J. Antibiot. (Tokyo) 1987, 40, 296–300. [Google Scholar]
- Kasprzewska, A. Plant chitinases--regulation and function. Cell. Mol. Biol. Lett 2003, 8, 809–824. [Google Scholar]
- Nakazaki, T; Tsukiyama, T; Okumoto, Y; Kageyama, D; Naito, K; Inouye, K; Tanisaka, T. Distribution, structure, organ-specific expression, and phylogenic analysis of the pathogenesis-related protein-3 chitinase gene family in rice (Oryza sativa L.). Genome 2006, 49, 619–630. [Google Scholar]
- Bussink, AP; Speijer, D; Aerts, JM; Boot, RG. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics 2007, 177, 959–970. [Google Scholar]
- Cohen-Kupiec, R; Chet, I. The molecular biology of chitin digestion. Curr. Opin. Biotechnol 1998, 9, 270–277. [Google Scholar]
- Coulson, AF. A proposed structure for 'family 18' chitinases. A possible function for narbonin. FEBS Lett 1994, 354, 41–44. [Google Scholar]
- Itoh, Y; Kawase, T; Nikaidou, N; Fukada, H; Mitsutomi, M; Watanabe, T; Itoh, Y. Functional analysis of the chitin-binding domain of family 19 chitinase from streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function. Biosci. Biotechnol. Biochem 2002, 66, 1084–1092. [Google Scholar]
- Funkhouser, JD; Aronson, NN, Jr. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol. Biol 2007, 7, 96. [Google Scholar]
- Sendai, Y; Abe, H; Kikuchi, M; Satoh, T; Hoshi, H. Purification and molecular cloning of bovine oviduct-specific glycoprotein. Biol. Reprod 1994, 50, 927–934. [Google Scholar]
- Hu, B; Trinh, K; Figueira, WF; Price, PA. Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family. J. Biol. Chem 1996, 271, 19415–19420. [Google Scholar]
- Hakala, BE; White, C; Recklies, AD. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J. Biol. Chem 1993, 268, 25803–25810. [Google Scholar]
- Johansen, JS; Olee, T; Price, PA; Hashimoto, S; Ochs, RL; Lotz, M. Regulation of YKL-40 production by human articular chondrocytes. Arthritis Rheum 2001, 44, 826–837. [Google Scholar]
- Kirkpatrick, RB; Emery, JG; Connor, JR; Dodds, R; Lysko, PG; Rosenberg, M. Induction and Expression of Human Cartilage Glycoprotein 39 in Rheumatoid Inflammatory and Peripheral Blood Monocyte-Derived Macrophages. Exp. Cell Res 1997, 237, 46–54. [Google Scholar]
- Chang, N-CA; Hung, S-I; Hwa, K-Y; Kato, I; Chen, J-E; Liu, C-H; Chang, AC. A Macrophage Protein, Ym1, Transiently Expressed during Inflammation Is a Novel Mammalian Lectin. J. Biol. Chem 2001, 276, 17497–17506. [Google Scholar]
- Webb, DC; McKenzie, ANJ; Foster, PS. Expression of the Ym2 Lectin-binding Protein Is Dependent on Interleukin (IL)-4 and IL-13 Signal Transduction. J. Biol. Chem 2001, 276, 41969–41976. [Google Scholar]
- Owhashi, M; Arita, H; Hayai, N. Identification of a Novel Eosinophil Chemotactic Cytokine (ECF-L) as a Chitinase Family Protein. J. Biol. Chem 2000, 275, 1279–1286. [Google Scholar]
- Lee, CG; Hartl, D; Lee, GR; Koller, B; Matsuura, H; Da Silva, CA; Sohn, MH; Cohn, L; Homer, RJ; Kozhich, AA; Humbles, A; Kearley, J; Coyle, A; Chupp, G; Reed, J; Flavell, RA; Elias, JA. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J. Exp. Med 2009, 206, 1149–1166. [Google Scholar]
- Shackelton, LM; Mann, DM; Millis, AJT. Identification of a 38-kDa Heparin-binding Glycoprotein (gp38k) in Differentiating Vascular Smooth Muscle Cells as a Member of a Group of Proteins Associated with Tissue Remodeling. J. Biol. Chem 1995, 270, 13076–13083. [Google Scholar]
- Verhage, HG; Mavrogianis, PA; O'Day-Bowman, MB; Schmidt, A; Arias, EB; Donnelly, KM; Boomsma, RA; Thibodeaux, JK; Fazleabas, AT; Jaffe, RC. Characteristics of an oviductal glycoprotein and its potential role in the fertilization process. Biol. Reprod 1998, 58, 1098–1101. [Google Scholar]
- Johansen, JS. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan. Med. Bull 2006, 53, 172–209. [Google Scholar]
- Renkema, GH; Boot, RG; Muijsers, AO; Donker-Koopman, WE; Aerts, JMFG. Purification and Characterization of Human Chitotriosidase, a Novel Member of the Chitinase Family of Proteins. J. Biol. Chem 1995, 270, 2198–2202. [Google Scholar]
- Boot, RG; Blommaart, EFC; Swart, E; Ghauharali-van der Vlugt, K; Bijl, N; Moe, C; Place, A; Aerts, JMFG. Identification of a Novel Acidic Mammalian Chitinase Distinct from Chitotriosidase. J. Biol. Chem 2001, 276, 6770–6778. [Google Scholar]
- Boot, RG; Renkema, GH; Strijland, A; van Zonneveld, AJ; Aerts, JM. Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J. Biol. Chem 1995, 270, 26252–26256. [Google Scholar]
- Krykbaev, R; Fitz, LJ; Reddy, PS; Winkler, A; Xuan, D; Yang, X; Fleming, M; Wolf, SF. Evolutionary and biochemical differences between human and monkey acidic mammalian chitinases. Gene 2010, 452, 63–71. [Google Scholar]
- Kzhyshkowska, J; Gratchev, A; Goerdt, S. Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomark Insights 2007, 2, 128–146. [Google Scholar]
- Kolstad, G; Synstad, B; Eijsink, VG; van Aalten, DM. Structure of the D140N mutant of chitinase B from Serratia marcescens at 1.45 A resolution. Acta Crystallogr. D Biol. Crystallogr 2002, 58, 377–379. [Google Scholar]
- Vaaje-Kolstad, G; Houston, DR; Rao, FV; Peter, MG; Synstad, B; van Aalten, DM; Eijsink, VG. Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin. Biochim. Biophys. Acta 2004, 1696, 103–111. [Google Scholar]
- van Aalten, DM; Synstad, B; Brurberg, MB; Hough, E; Riise, BW; Eijsink, VG; Wierenga, RK. Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-A resolution. Proc. Natl. Acad. Sci. USA 2000, 97, 5842–5847. [Google Scholar]
- Ferrandon, S; Sterzenbach, T; Mersha, FB; Xu, MQ. A single surface tryptophan in the chitin-binding domain from Bacillus circulans chitinase A1 plays a pivotal role in binding chitin and can be modified to create an elutable affinity tag. Biochim. Biophys. Acta 2003, 1621, 31–40. [Google Scholar]
- Hardt, M; Laine, RA. Mutation of active site residues in the chitin-binding domain ChBDChiA1 from chitinase A1 of Bacillus circulans alters substrate specificity: use of a green fluorescent protein binding assay. Arch Biochem. Biophys 2004, 426, 286–297. [Google Scholar]
- Jee, JG; Ikegami, T; Hashimoto, M; Kawabata, T; Ikeguchi, M; Watanabe, T; Shirakawa, M. Solution structure of the fibronectin type III domain from Bacillus circulans WL-12 chitinase A1. J. Biol. Chem 2002, 277, 1388–1397. [Google Scholar]
- Watanabe, T; Uchida, M; Kobori, K; Tanaka, H. Site-directed mutagenesis of the Asp-197 and Asp-202 residues in chitinase A1 of Bacillus circulans WL-12. Biosci. Biotechnol. Biochem 1994, 58, 2283–2285. [Google Scholar]
- Watanabe, T; Ariga, Y; Sato, U; Toratani, T; Hashimoto, M; Nikaidou, N; Kezuka, Y; Nonaka, T; Sugiyama, J. Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin. Biochem. J 2003, 376, 237–244. [Google Scholar]
- Watanabe, T; Kobori, K; Miyashita, K; Fujii, T; Sakai, H; Uchida, M; Tanaka, H. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J. Biol. Chem 1993, 268, 18567–18572. [Google Scholar]
- Songsiriritthigul, C; Pantoom, S; Aguda, AH; Robinson, RC; Suginta, W. Crystal structures of Vibrio harveyi chitinase A complexed with chitooligosaccharides: implications for the catalytic mechanism. J. Struct. Biol 2008, 162, 491–499. [Google Scholar]
- Suginta, W; Songsiriritthigul, C; Kobdaj, A; Opassiri, R; Svasti, J. Mutations of Trp275 and Trp397 altered the binding selectivity of Vibrio carchariae chitinase A. Biochim. Biophys. Acta 2007, 1770, 1151–1160. [Google Scholar]
- Suginta, W; Vongsuwan, A; Songsiriritthigul, C; Svasti, J; Prinz, H. Enzymatic properties of wild-type and active site mutants of chitinase A from Vibrio carchariae, as revealed by HPLC-MS. FEBS J 2005, 272, 3376–3386. [Google Scholar]
- Karasuda, S; Tanaka, S; Kajihara, H; Yamamoto, Y; Koga, D. Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides. Biosci. Biotechnol. Biochem 2003, 67, 221–224. [Google Scholar]
- Mostafa, SA; Mahmoud, MS; Mohamed, ZK; Enan, MR. Cloning and molecular characterization of chitinase from Bacillus licheniformis MS-3. J. Gen. Appl. Microbiol 2009, 55, 241–246. [Google Scholar]
- Tsujibo, H; Kubota, T; Yamamoto, M; Miyamoto, K; Inamori, Y. Characterization of chitinase genes from an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131. Appl. Environ. Microbiol 2003, 69, 894–900. [Google Scholar]
- Bhattacharya, D; Nagpure, A; Gupta, RK. Bacterial chitinases: properties and potential. Crit. Rev. Biotechnol 2007, 27, 21–28. [Google Scholar]
- Dahiya, N; Tewari, R; Hoondal, GS. Biotechnological aspects of chitinolytic enzymes: a review. Appl. Microbiol. Biotechnol 2006, 71, 773–782. [Google Scholar]
- Hayes, M; Carney, B; Slater, J; Bruck, W. Mining marine shellfish wastes for bioactive molecules: chitin and chitosan--Part B: applications. Biotechnol. J 2008, 3, 878–889. [Google Scholar]
- Songsiriritthigul, C; Pesatcha, P; Eijsink, VG; Yamabhai, M. Directed evolution of a Bacillus chitinase. Biotechnol. J 2009, 4, 501–509. [Google Scholar]
- Howard, MB; Ekborg, NA; Weiner, RM; Hutcheson, SW. Detection and characterization of chitinases and other chitin-modifying enzymes. J. Ind. Microbiol. Biotechnol 2003, 30, 627–635. [Google Scholar]
- Patil, RS; Ghormade, VV; Deshpande, MV. Chitinolytic enzymes: an exploration. Enzyme Microb. Technol 2000, 26, 473–483. [Google Scholar]
- Songsiriritthigul, C; Lapboonrueng, S; Pechsrichuang, P; Pesatcha, P; Yamabhai, M. Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste. Bioresour. Technol 2010, 101, 4096–4103. [Google Scholar]
- Kawabata, S; Nagayama, R; Hirata, M; Shigenaga, T; Agarwala, KL; Saito, T; Cho, J; Nakajima, H; Takagi, T; Iwanaga, S. Tachycitin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin-binding activity. J. Biochem 1996, 120, 1253–1260. [Google Scholar]
- Van Dellen, KL; Chatterjee, A; Ratner, DM; Magnelli, PE; Cipollo, JF; Steffen, M; Robbins, PW; Samuelson, J. Unique posttranslational modifications of chitin-binding lectins of Entamoeba invadens cyst walls. Eukaryot. Cell 2006, 5, 836–848. [Google Scholar]
- Broekaert, WF; Van Parijs, J; Leyns, F; Joos, H; Peumans, WJ. A Chitin-Binding Lectin from Stinging Nettle Rhizomes with Antifungal Properties. Science 1989, 245, 1100–1102. [Google Scholar]
- Willis, JH. Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect. Biochem. Mol. Biol 2010, 40, 189–204. [Google Scholar]
- Tang, L; Liang, J; Zhan, Z; Xiang, Z; He, N. Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori. Insect. Biochem. Mol. Biol 2010, 40, 228–234. [Google Scholar]
- Jasrapuria, S; Arakane, Y; Osman, G; Kramer, KJ; Beeman, RW; Muthukrishnan, S. Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect. Biochem. Mol. Biol 2010, 40, 214–227. [Google Scholar]
- Selitrennikoff, CP. Antifungal Proteins. Appl. Environ. Microbiol 2001, 67, 2883–2894. [Google Scholar]
- Asensio, JL; Canada, FJ; Siebert, HC; Laynez, J; Poveda, A; Nieto, PM; Soedjanaamadja, UM; Gabius, HJ; Jimenez-Barbero, J. Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains. Chem. Biol 2000, 7, 529–543. [Google Scholar]
- Bormann, C; Baier, D; Horr, I; Raps, C; Berger, J; Jung, G; Schwarz, H. Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tu901 that interferes with growth polarity. J. Bacteriol 1999, 181, 7421–7429. [Google Scholar]
- Chae, KS; Lee, IH; Choi, CS; Kim, HR. Purification and characterization of chitin-binding proteins from the hemolymph of sweet potato hornworm, Agrius convolvuli. Comp. Biochem. Physiol. B Biochem. Mol. Biol 1999, 124, 475–481. [Google Scholar]
- De Bolle, MF; David, KM; Rees, SB; Vanderleyden, J; Cammue, BP; Broekaert, WF. Cloning and characterization of a cDNA encoding an antimicrobial chitin-binding protein from amaranth, Amaranthus caudatus. Plant Mol. Biol 1993, 22, 1187–1190. [Google Scholar]
- Huang, X; Xie, W; Gong, Z. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett 2000, 478, 123–126. [Google Scholar]
- Kolbe, S; Fischer, S; Becirevic, A; Hinz, P; Schrempf, H. The Streptomyces reticuli alpha-chitin-binding protein CHB2 and its gene. Microbiology 1998, 144 Pt 5, 1291–1297. [Google Scholar]
- Hamodrakas, SJ; Willis, JH; Iconomidou, VA. A structural model of the chitin-binding domain of cuticle proteins. Insect. Biochem. Mol. Biol 2002, 32, 1577–1583. [Google Scholar]
- Willis, JH. Cuticular Proteins in Insects and Crustaceans. Am. Zool 1999, 39, 600–609. [Google Scholar]
- Eijsink, VG; Vaaje-Kolstad, G; Varum, KM; Horn, SJ. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 2008, 26, 228–235. [Google Scholar]
- Vaaje-Kolstad, G; Horn, SJ; van Aalten, DM; Synstad, B; Eijsink, VG. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J. Biol. Chem 2005, 280, 28492–28497. [Google Scholar]
- Endo, T; Koizumi, S. Large-scale production of oligosaccharides using engineered bacteria. Curr. Opin. Struct. Biol 2000, 10, 536–541. [Google Scholar]
- Cottaz, S; Samain, E. Genetic engineering of Escherichia coli for the production of NI,NII-diacetylchitobiose (chitinbiose) and its utilization as a primer for the synthesis of complex carbohydrates. Metab. Eng 2005, 7, 311–317. [Google Scholar]
- Samain, E; Drouillard, S; Heyraud, A; Driguez, H; Geremia, RA. Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli. Carbohydr. Res 1997, 302, 35–42. [Google Scholar]
- Samain, E; Chazalet, V; Geremia, RA. Production of O-acetylated and sulfated chitooligosaccharides by recombinant Escherichia coli strains harboring different combinations of nod genes. J. Biotechnol 1999, 72, 33–47. [Google Scholar]
- van der Holst, PP; Schlaman, HR; Spaink, HP. Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Curr. Opin. Struct. Biol 2001, 11, 608–616. [Google Scholar]
- Amatayakul-Chantler, S; Ferguson, MAJ; Dwek, RA; Rademacher, TW; Parekh, RB; Crandall, IE; Newell, PC. Cell surface oligosaccharides on Dictyostelium during development. J. Cell Sci 1975, 99, 485–495. [Google Scholar]
- Varki, A; Marth, J. Oligosaccharides in vertebrate development. Semin. Dev. Biol 1995, 6, 127–138. [Google Scholar]
- Bakkers, J; Semino, CE; Stroband, H; Kijne, JW; Robbins, PW; Spaink, HP. An important developmental role for oligosaccharides during early embryogenesis of cyprinid fish. Proc. Natl. Acad. Sci. USA 1997, 94, 7982–7986. [Google Scholar]
- Iglesias, M; Soler, RM; Ribera, J; Esquerda, JE; Comella, JX. The carbohydrate N-acetylglucosamine is involved in the guidance of neurites from chick ciliary ganglion neurons through the extracellular matrix of rat skeletal muscle fiber. Neurosci. Lett 1996, 207, 81–84. [Google Scholar]
- Wells, L; Whelan, SA; Hart, GW. O-GlcNAc: a regulatory post-translational modification. Biochem. Biophys. Res. Commun 2003, 302, 435–441. [Google Scholar]
- Hurtado-Guerrero, R; Dorfmueller, HC; van Aalten, DM. Molecular mechanisms of O-GlcNAcylation. Curr. Opin. Struct. Biol 2008, 18, 551–557. [Google Scholar]
- Hart, GW. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu. Rev. Biochem 1997, 66, 315–335. [Google Scholar]
- Kang, E-S; Han, D; Park, J; Kwak, TK; Oh, M-A; Lee, S-A; Choi, S; Park, ZY; Kim, Y; Lee, JW. O-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic [beta] cells. Exp. Cell Res 2008, 314, 2238–2248. [Google Scholar]
- Yanagisawa, M; Yu, RK. O-linked beta-N-acetylglucosaminylation in mouse embryonic neural precursor cells. J. Neurosci. Res 2009, 87, 3535–3545. [Google Scholar]
- Lazarus, BD; Love, DC; Hanover, JA. O-GlcNAc cycling: Implications for neurodegenerative disorders. Int. J. Biochem. Cell Biol 2009, 41, 2134–2146. [Google Scholar]
- Zeidan, Q; Hart, GW. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J. Cell Sci 2010, 123, 13–22. [Google Scholar]
- Zachara, NE; Hart, GW. Cell signaling, the essential role of O-GlcNAc! Biochim. Biophys. Acta 2006, 1761, 599–617. [Google Scholar]
- Tallent, MK; Varghis, N; Skorobogatko, Y; Hernandez-Cuebas, L; Whelan, K; Vocadlo, DJ; Vosseller, K. In Vivo Modulation of O-GlcNAc Levels Regulates Hippocampal Synaptic Plasticity through Interplay with Phosphorylation. J. Biol. Chem 2009, 284, 174–181. [Google Scholar]
- Brimble, S; Wollaston-Hayden, EE; Teo, CF; Morris, AC; Wells, L. The Role of the O-GlcNAc Modification in Regulating Eukaryotic Gene Expression. Curr. Signal Transd. Ther 2010, 5, 12–24. [Google Scholar]
- Comer, FI; Hart, GW. O-GlcNAc and the control of gene expression. Biochim. Biophys. Acta 1999, 1473, 161–171. [Google Scholar]
- Hart, GW; Housley, MP; Slawson, C. Cycling of O-linked [beta]-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 2007, 446, 1017–1022. [Google Scholar]
- Zachara, NE; Hart, GW. O-GlcNAc modification: a nutritional sensor that modulates proteasome function. Trends Cell Biol 2004, 14, 218–221. [Google Scholar]
- Kang, JG; Park, SY; Ji, S; Jang, I; Park, S; Kim, HS; Kim, SM; Yook, JI; Park, YI; Roth, J; Cho, JW. O-GlcNAc protein modification in cancer cells increases in response to glucose deprivation through glycogen degradation. J. Biol. Chem 2009, 284, 34777–34784. [Google Scholar]
- Whelan, SA; Dias, WB; Thiruneelakantapillai, L; Lane, MD; Hart, GW. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. J. Biol. Chem 2010, 285, 5204–5211. [Google Scholar]
- Duverger, E; Roche, A-C; Monsigny, M. N-Acetylglucosamine-dependent nuclear import of neoglycoproteins. Glycobiology 1996, 6, 381–386. [Google Scholar]
- Guinez, C; Morelle, W; Michalski, J-C; Lefebvre, T. O-GlcNAc glycosylation: a signal for the nuclear transport of cytosolic proteins? Int. J. Biochem. Cell Biol 2005, 37, 765–774. [Google Scholar]
- Chatham, JC; Marchase, RB. Protein O-GlcNAcylation: A Critical Regulator of the Cellular Response to Stress. Curr. Signal Transduction Ther 2010, 5, 49–59. [Google Scholar]
- Pappa, A; Guerini, D. Immune Regulation by the Posttranslational Modification O-GlcNAc. Curr. Signal Transduction Ther 2010, 5, 41–48. [Google Scholar]
- Aam, BB; Heggset, EB; Norberg, AL; S⊘rlie, M; Vårum, KM; Eijsink, VGH. Production of Chitooligosaccharides and Their Potential Applications in Medicine. Mar. Drugs 2010, 8, 1482–1517. [Google Scholar]
- Muzzarelli, RAA. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar. Drugs 2010, 8, 292–312. [Google Scholar]
- Jeong, HJ; Koo, HN; Oh, EY; Chae, HJ; Kim, HR; Suh, SB; Kim, CH; Cho, KH; Park, BR; Park, ST; Lee, YM; Kim, HM. Nitric oxide production by high molecular weight water-soluble chitosan via nuclear factor-kappaB activation. Int. J. Immunopharmacol 2000, 22, 923–933. [Google Scholar]
- Minami, S; Suzuki, H; Okamoto, Y; Fujinaga, T; Shigemasa, Y. Chitin and chitosan activate complement via the alternative pathway. Carbohydr. Polym 1998, 36, 151–155. [Google Scholar]
- Freier, T; Montenegro, R; Shan Koh, H; Shoichet, MS. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 2005, 26, 4624–4632. [Google Scholar]
- Klokkevold, PR; Fukayama, H; Sung, EC; Bertolami, CN. The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits. J. Oral Maxillofac. Surg 1999, 57, 49–52. [Google Scholar]
- Okamoto, Y; Yano, R; Miyatake, K; Tomohiro, I; Shigemasa, Y; Minami, S. Effects of chitin and chitosan on blood coagulation. Carbohydr. Polym 2003, 53, 337–342. [Google Scholar]
- Shelma, R; Paul, W; Sharma, CP. Chitin Nanofibre Reinforced Thin Chitosan Films for Wound Healing Application. Trends Biomater. Artif. Organs 2008, 22, 111–115. [Google Scholar]
- Mi, F-L; Shyu, S-S; Wu, Y-B; Lee, S-T; Shyong, J-Y; Huang, R-N. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 2001, 22, 165–173. [Google Scholar]
- Ong, S-Y; Wu, J; Moochhala, SM; Tan, M-H; Lu, J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 2008, 29, 4323–4332. [Google Scholar]
- Dai, T; Tegos, GP; Burkatovskaya, M; Castano, AP; Hamblin, MR. Chitosan acetate bandage as a topical antimicrobial dressing for infected burns. Antimicrob. Agents Chemother 2009, 53, 393–400. [Google Scholar]
- Brandl, F; Sommer, F; Goepferich, A. Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior. Biomaterials 2007, 28, 134–146. [Google Scholar]
- Tsioptsias, C; Tsivintzelis, I; Papadopoulou, L; Panayiotou, C. A novel method for producing tissue engineering scaffolds from chitin, chitin-hydroxyapatite, and cellulose. Mater. Sci. Eng. C 2009, 29, 159–164. [Google Scholar]
- Drury, JL; Mooney, DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar]
- Khor, E; Lim, LY. Implantable applications of chitin and chitosan. Biomaterials 2003, 24, 2339–2349. [Google Scholar]
- Gong, Y; Gong, L; Gu, X; Ding, F. Chitooligosaccharides promote peripheral nerve regeneration in a rabbit common peroneal nerve crush injury model. Microsurgery 2009, 29, 650–656. [Google Scholar]
- Razdan, A; Pettersson, D. Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. Br. J. Nutr 1994, 72, 277–288. [Google Scholar]
- Muzzarelli, RAA; Muzzarelli, C. Biliaderis, CG, Izydorczyk, MS, Eds.; Chitosan, a dietary supplement and a food technology commodity. In Functional Food Carbohydrates; Francis and Taylor: Orlando, FL, USA, 2006; pp. 215–248. [Google Scholar]
- Gallaher, CM; Munion, J; Hesslink, R, Jr; Wise, J; Gallaher, DD. Cholesterol Reduction by Glucomannan and Chitosan Is Mediated by Changes in Cholesterol Absorption and Bile Acid and Fat Excretion in Rats. J. Nutr 2000, 130, 2753–2759. [Google Scholar]
- Burton-Freeman, B. Dietary Fiber and Energy Regulation. J. Nutr 2000, 130, 272–275. [Google Scholar]
- Maezaki, Y; Tsuji, K; Nakagawa, Y; Kawai, Y; Akimoto, M; Tsugita, T; Takekawa, W; Terada, A; Hara, H; Mitsuoka, T. Hypocholesterolemic Effect of Chitosan in Adult Males. Biosci. Biotech. Biochem 1993, 57, 1439–1444. [Google Scholar]
- Dev, A; Mohan, JC; Sreeja, V; Tamura, H; Patzke, GR; Hussain, F; Weyeneth, S; Nair, SV; Jayakumar, R. Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr. Polym 2010, 79, 1073–1079. [Google Scholar]
- Kamiyama, K; Onishi, H; Machida, Y. Biodisposition characteristics of N-succinyl-chitosan and glycol- chitosan in normal and tumor-bearing mice. Biol. Pharm. Bull 1999, 22, 179–186. [Google Scholar]
- Ishihara, M; Obara, K; Nakamura, S; Fujita, M; Masuoka, K; Kanatani, Y; Takase, B; Hattori, H; Morimoto, Y; Ishihara, M; Maehara, T; Kikuchi, M. Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J. Artif. Organs 2006, 9, 8–16. [Google Scholar]
- Zhao, Y; Chen, G; Sun, M; Jin, Z; Gao, C. Study on preparation of the pH sensitive hydroxyethyl chitin/poly (acrylic acid) hydrogel and its drug release property. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2006, 23, 338–341. [Google Scholar]
- Janes, KA; Calvo, P; Alonso, MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev 2001, 47, 83–97. [Google Scholar]
- Haidar, ZS; Hamdy, RC; Tabrizian, M. Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials 2008, 29, 1207–1215. [Google Scholar]
- Calvo, P; Remuñán-López, C; Vila-Jato, JL; Alonso, MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci 1997, 63, 125–132. [Google Scholar]
- Bodmeier, R; Chen, H; Paeratakul, O. A Novel Approach to the Oral Delivery of Micro- or Nanoparticles. Pharm. Res 1989, 6, 413–417. [Google Scholar]
- Calabrese, V; Lodi, R; Tonon, C; D'Agata, V; Sapienza, M; Scapagnini, G; Mangiameli, A; Pennisi, G; Stella, AMG; Butterfield, DA. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J. Neurol. Sci 2005, 233, 145–162. [Google Scholar]
- Ngo, D-N; Lee, S-H; Kim, M-M; Kim, S-K. Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J. Funct. Foods 2009, 1, 188–198. [Google Scholar]
- Je, J-Y; Kim, S-K. Antioxidant activity of novel chitin derivative. Bioorg. Med. Chem. Lett 2006, 16, 1884–1887. [Google Scholar]
- Park, P-J; Je, J-Y; Kim, S-K. Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr. Polym 2004, 55, 17–22. [Google Scholar]
- Je, J-Y; Cho, Y-S; Kim, S-K. Characterization of (Aminoethyl)chitin/DNA Nanoparticle for Gene Delivery. Biomacromolecules 2006, 7, 3448–3451. [Google Scholar]
- Xie, W; Xu, P; Liu, Q. Antioxidant activity of water-soluble chitosan derivatives. Bioorg. Med. Chem. Lett 2001, 11, 1699–1701. [Google Scholar]
- Bautista-Baños, S; Hernández-López, M; Bosquez-Molina, E; Wilson, CL. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop. Prot 2003, 22, 1087–1092. [Google Scholar]
- Tsai, GJ; Su, WH. Antibacterial activity of shrimp chitosan against Escherichia coli. J. Food Prot 1999, 62, 239–243. [Google Scholar]
- San-Lang, W; Shih, I-L; Wang, C-H; Tseng, K-C; Chang, W-T; Twu, Y-K; Ro, J-J; Wang, C-L. Production of antifungal compounds from chitin by Bacillus subtilis. Enzyme Microb. Technol 2002, 31, 321–328. [Google Scholar]
- Li, B; Wang, X; Chen, R; Huangfu, W; Xie, G. Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Carbohydr. Polym 2008, 72, 287–292. [Google Scholar]
- El Ghaouth, A; Arul, J; Asselin, A; Benhamou, N. Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycol. Res 1992, 96, 769–779. [Google Scholar]
- Young, DH; Kohle, H; Kauss, H. Effect of Chitosan on Membrane Permeability of Suspension-Cultured Glycine max and Phaseolus vulgaris Cells. Plant Physiol 1982, 70, 1449–1454. [Google Scholar]
- De Smedt, SC; Demeester, J; Hennink, WE. Cationic Polymer Based Gene Delivery Systems. Pharm. Res 2000, 17, 113–126. [Google Scholar]
- Park, YK; Park, YH; Shin, BA; Choi, ES; Park, YR; Akaike, T; Cho, CS. Galactosylated chitosan-graft-dextran as hepatocyte-targeting DNA carrier. J. Controlled Release 2000, 69, 97–108. [Google Scholar]
- Leong, KW; Mao, HQ; Truong-Le, VL; Roy, K; Walsh, SM; August, JT. DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Controlled Release 1998, 53, 183–193. [Google Scholar]
- Erbacher, P; Zou, S; Bettinger, T; Steffan, A-M; Remy, J-S. Chitosan-Based Vector/DNA Complexes for Gene Delivery: Biophysical Characteristics and Transfection Ability. Pharm. Res 1998, 15, 1332–1339. [Google Scholar]
- Begin, A; Van Calsteren, MR. Antimicrobial films produced from chitosan. Int. J. Biol. Macromol 1999, 26, 63–67. [Google Scholar]
- Ouattara, B; Simard, RE; Piette, G; BÈgin, A; Holley, RA. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int. J. Food Microbiol 2000, 62, 139–148. [Google Scholar]
- Dutta, PK; Tripathi, S; Mehrotra, GK; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem 2009, 114, 1173–1182. [Google Scholar]
- Day, RB; Okada, M; Ito, Y; Tsukada, K; Zaghouani, H; Shibuya, N; Stacey, G. Binding site for chitin oligosaccharides in the soybean plasma membrane. Plant Physiol 2001, 126, 1162–1173. [Google Scholar]
- De Jong, AJ; Heidstra, R; Spaink, HP; Hartog, MV; Meijer, EA; Hendriks, T; Schiavo, FL; Terzi, M; Bisseling, T; Van Kammen, A; De Vries, SC. Rhizobium Lipooligosaccharides Rescue a Carrot Somatic Embryo Mutant. Plant Cell 1993, 5, 615–620. [Google Scholar]
- Felix, G; Baureithel, K; Boller, T. Desensitization of the perception system for chitin fragments in tomato cells. Plant Physiol 1998, 117, 643–650. [Google Scholar]
- Minami, E; Kouchi, H; Carlson, RW; Cohn, JR; Kolli, VK; Day, RB; Ogawa, T; Stacey, G. Cooperative action of lipo-chitin nodulation signals on the induction of the early nodulin, ENOD2, in soybean roots. Mol. Plant Microbe Interact 1996, 9, 574–583. [Google Scholar]
- Ito, Y; Kaku, H; Shibuya, N. Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. Plant J 1997, 12, 347–356. [Google Scholar]
- Okada, M; Matsumura, M; Shibuya, N. Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in theplasma membrane from rice leaf and root cells. J. Plant Physiol 2001, 158, 121–124. [Google Scholar]
- Koev, ST; Powers, MA; Park, JJ; Yi, H; Wu, L; Bentley, WE; Payne, GF; Rubloff, GW; Ghodssi, R. Chitosan as a functional interface between biology and microsystems. Bio Micro and Nanosystems Conference, 2006, BMN '06, 15–18 January 2006; pp. 82–82.
- Cheng, JC; Pisano, AP. Photolithographic Process for Integration of the Biopolymer Chitosan into Micro/Nanostructures. J. Microelectromech. Syst 2008, 17, 402–409. [Google Scholar]
- Park, I; Cheng, J; Pisano, AP; Lee, E-S; Jeong, J-H. Low temperature, low pressure nanoimprinting of chitosan as a biomaterial for bionanotechnology applications. Appl. Phys. Lett 2007, 90, 093902–093903. [Google Scholar]
- Wang, B; Tian, C; Wang, L; Wang, R; Fu, H. Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites. Nanotechnology 2010, 21, 025606. [Google Scholar]
- Gopalan, NK; Dufresne, A. Crab Shell Chitin Whisker Reinforced Natural Rubber Nanocomposites. 1. Processing and Swelling Behavior. Biomacromolecules 2003, 4, 657–665. [Google Scholar]
- Tanahashi, I; Yoshida, A; Nishino, A. Comparison of the Electrochemical Properties of Electric Double-Layer Capacitors with an Aqueous Electrolyte and with a Nonaqueous Electrolyte. Bull. Chem. Soc. Jpn 1990, 63, 3611–3614. [Google Scholar]
- Yamazaki, S; Takegawa, A; Kaneko, Y; Kadokawa, J-i; Yamagata, M; Ishikawa, M. An acidic cellulose-chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem. Commun 2009, 11, 68–70. [Google Scholar]
- Sakaguchi, T; Horikoshi, T; Nakajima, A. Adsorption of Uranium by Chitin Phosphate and Chitosan Phosphate. Agric. Biol. Chem 1981, 45, 2191–2195. [Google Scholar]
- Franco, LdO; Maia, RdCC; Porto, ALF; Messias, AS; Fukushima, K; Campos-Takaki, GMd. Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109). Braz. J. Microbiol 2004, 35, 243–247. [Google Scholar]
- Jianlong, W; Xinmin, Z; Decai, D; Ding, Z. Bioadsorption of lead(II) from aqueous solution by fungal biomass of Aspergillus niger. J. Biotechnol 2001, 87, 273–277. [Google Scholar]
- Hakim, L; Sabarudin, A; Oshita, K; Oshima, M; Motomizu, S. Synthesis of chitosan-based resins modified with tris(2-aminoethyl)amine moiety and its application to collection/concentration and determination of trace mercury by inductively coupled plasma atomic emission spectrometry. Talanta 2008, 76, 1256–1260. [Google Scholar] [Green Version]
- Hakim, L; Sabarudin, A; Oshita, K; Oshima, M; Motomizu, S. Synthesis of cross-linked chitosan functionalized with threonine moiety and its application to on-line collection/concentration and determination of Mo, V and Cu. Talanta 2008, 74, 977–985. [Google Scholar] [Green Version]
- Oshita, K; Seo, K; Sabarudin, A; Oshima, M; Takayanagi, T; Motomizu, S. Synthesis of chitosan resin possessing a phenylarsonic acid moiety for collection/concentration of uranium and its determination by ICP-AES. Anal. Bioanal. Chem 2008, 390, 1927–1932. [Google Scholar]
- Hosoba, M; Oshita, K; Katarina, RK; Takayanagi, T; Oshima, M; Motomizu, S. Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system. Anal. Chim. Acta 2009, 639, 51–56. [Google Scholar]
- Hakim, L; Sabarudin, A; Oshima, M; Motomizu, S. Synthesis of novel chitosan resin derivatized with serine diacetic acid moiety and its application to on-line collection/concentration of trace elements and their determination using inductively coupled plasma-atomic emission spectrometry. Anal. Chim. Acta 2007, 588, 73–81. [Google Scholar] [Green Version]
- Peiselt da Silva, KM; Pais da silva, MI. Copper sorption from diesel oil on chitin and chitosan polymers. Colloids Surf. A 2004, 237, 15–21. [Google Scholar]
- Aksu, Zm. Application of biosorption for the removal of organic pollutants: a review. Process Biochem 2005, 40, 997–1026. [Google Scholar]
- Wei, ZG; Sandstroröm, R; Miyazaki, S. Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. J. Mater. Sci 1998, 33, 3743–3762. [Google Scholar]
- Zia, KM; Zuber, M; Barikani, M; Bhatti, IA; Khan, MB. Surface characteristics of chitin-based shape memory polyurethane elastomers. Colloids Surf. B Biointerfaces 2009, 72, 248–252. [Google Scholar]
- Zhang, G; Wang, H; Shi, J; Wang, X; Zheng, H; Wong, G; Clark, T; Wang, W; Wang, J; Kang, L. Identification and characterization of insect-specific proteins by genome data analysis. BMC Genomics 2007, 8, 93. [Google Scholar] [Green Version]
- Ieropoulos, I; Melhuish, C; Greenman, J; Horsfield, I; Hart, J. Energy autonomy in robots through Microbial Fuel Cells. In CiteSeerX - Scientific Literature Digital Library and Search Engine; The Pennsylvania State University: USA, 2004. [Google Scholar]
- Giribet, G; Okusu, A; Lindgren, AR; Huff, SW; Schrodl, M; Nishiguchi, MK. Evidence for a clade composed of molluscs with serially repeated structures: monoplacophorans are related to chitons. Proc. Natl. Acad. Sci. USA 2006, 103, 7723–7728. [Google Scholar]
- Evvyernie, D; Yamazaki, S; Morimoto, K; Karita, S; Kimura, T; Sakka, K; Ohmiya, K. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. J. Biosci. Bioeng 2000, 89, 596–601. [Google Scholar]
- Morimoto, K; Kimura, T; Sakka, K; Ohmiya, K. Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol. Lett 2005, 246, 229–234. [Google Scholar]
- You, Y; Park, WH; Ko, BM; Min, BM. Effects of PVA sponge containing chitooligosaccharide in the early stage of wound healing. J. Mater. Sci. Mater. Med 2004, 15, 297–301. [Google Scholar]
- Choi, BK; Kim, KY; Yoo, YJ; Oh, SJ; Choi, JH; Kim, CY. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int. J. Antimicrob. Agents 2001, 18, 553–557. [Google Scholar]
- Kageyama, C; Kato, K; Iyozumi, H; Inagaki, H; Yamaguchi, A; Furuse, K; Baba, K. Photon emissions from rice cells elicited by N-acetylchitooligosaccharide are generated through phospholipid signaling in close association with the production of reactive oxygen species. Plant Physiol. Biochem 2006, 44, 901–909. [Google Scholar]
- Shen, KT; Chen, MH; Chan, HY; Jeng, JH; Wang, YJ. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem. Toxicol 2009, 47, 1864–1871. [Google Scholar]
- Tsukada, K; Matsumoto, T; Aizawa, K; Tokoro, A; Naruse, R; Suzuki, S; Suzuki, M. Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Jpn. J. Cancer Res 1990, 81, 259–265. [Google Scholar]
- Wang, SL; Lin, HT; Liang, TW; Chen, YJ; Yen, YH; Guo, SP. Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Bioresour. Technol 2008, 99, 4386–4393. [Google Scholar]
- Mizuochi, T; Nakata, M. HIV infection and oligosaccharides: a novel approach to preventing HIV infection and the onset of AIDS. J. Infect. Chemother 1999, 5, 190–195. [Google Scholar]
- Chipman, DM; Grisaro, V; Sharon, N. The binding of oligosaccharides containing N-acetylglucosamine and N-acetylmuramic acid to lysozyme. The specificity of binding subsites. J. Biol. Chem 1967, 242, 4388–4394. [Google Scholar]
- Austin, PR; Brine, CJ; Castle, JE; Zikakis, JP. Chitin: New facets of research. Science 1981, 212, 749–753. [Google Scholar]
- Hayes, M; Carney, B; Slater, J; Bruck, W. Mining marine shellfish wastes for bioactive molecules: chitin and chitosan--Part A: extraction methods. Biotechnol. J 2008, 3, 871–877. [Google Scholar]
- Kurita, K. Chitin and chitosan: functional biopolymers from marine crustaceans. Mar. Biotechnol. (NY) 2006, 8, 203–226. [Google Scholar]
- Synowiecki, J; Al-Khateeb, NA. Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr 2003, 43, 145–171. [Google Scholar]
- Tharanathan, RN; Kittur, FS. Chitin--the undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr 2003, 43, 61–87. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Khoushab, F.; Yamabhai, M. Chitin Research Revisited. Mar. Drugs 2010, 8, 1988-2012. https://doi.org/10.3390/md8071988
Khoushab F, Yamabhai M. Chitin Research Revisited. Marine Drugs. 2010; 8(7):1988-2012. https://doi.org/10.3390/md8071988
Chicago/Turabian StyleKhoushab, Feisal, and Montarop Yamabhai. 2010. "Chitin Research Revisited" Marine Drugs 8, no. 7: 1988-2012. https://doi.org/10.3390/md8071988
APA StyleKhoushab, F., & Yamabhai, M. (2010). Chitin Research Revisited. Marine Drugs, 8(7), 1988-2012. https://doi.org/10.3390/md8071988