Structure of a Cyclic Peptide as an Inhibitor of Mycobacterium tuberculosis Transcription: NMR and Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Results
2.1. Chemical Shift Assignment
2.2. NOE Space Connectivity
2.3. Temperature-Dependent NMR
2.4. Interproton Distance and Dihedral Angle Restraints
2.5. Molecular Model of Cyclo(1,6)Ac-CLYHFC-NH2
3. Discussion
4. Materials and Methods
4.1. Peptide Synthesis
4.2. NMR Spectroscopy
4.3. Computational Simulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dheda, K.; Perumal, T.; Moultrie, H.; Perumal, R.; Esmail, A.; Scott, A.J.; Udwadia, Z.; Chang, K.C.; Peter, J.; Pooran, A.; et al. The intersecting pandemics of tuberculosis and COVID-19: Population-level and patient-level impact, clinical presentation, and corrective interventions. Lancet Respir. Med. 2022, 10, 603–622. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Tuberculosis Report; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Barberis, I.; Bragazzi, N.L.; Galluzzo, L.; Martini, M. The history of tuberculosis: From the first historical records to the isolation of Koch’s bacillus. J. Prev. Med. Hyg. 2017, 58, E9–E12. [Google Scholar] [PubMed]
- Nguyen, L. Antibiotic resistance mechanisms in M. tuberculosis: An update. Arch. Toxicol. 2016, 90, 1585–1604. [Google Scholar] [CrossRef]
- Islam, M.M.; Tan, Y.; Hameed, H.M.A.; Liu, Z.; Chhotaray, C.; Liu, Y.; Lu, Z.; Cai, X.; Tang, Y.; Gao, Y.; et al. Detection of novel mutations associated with independent resistance and cross-resistance to isoniazid and prothionamide in Mycobacterium tuberculosis clinical isolates. Clin. Microbiol. Infect. 2019, 25, 1041.e1–1041.e7. [Google Scholar] [CrossRef]
- Bwanga, F.; Joloba, M.L.; Haile, M.; Hoffner, S. Evaluation of seven tests for the rapid detection of multidrug-resistant tuberculosis in Uganda. Int. J. Tuberc. Lung Dis. 2010, 14, 890–895. [Google Scholar]
- Almeida Da Silva, P.E.; Palomino, J.C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: Classical and new drugs. J. Antimicrob. Chemother. 2011, 66, 1417–1430. [Google Scholar] [CrossRef]
- Koch, A.; Mizrahi, V.; Warner, D.F. The impact of drug resistance on Mycobacterium tuberculosis physiology: What can we learn from rifampicin? Emerg. Microbes Infect. 2014, 3, e17. [Google Scholar] [CrossRef]
- Lin, W.; Mandal, S.; Degen, D.; Liu, Y.; Ebright, Y.W.; Li, S.; Feng, Y.; Zhang, Y.; Mandal, S.; Jiang, Y.; et al. Structural Basis of Mycobacterium tuberculosis Transcription and Transcription Inhibition. Mol. Cell 2017, 66, 169–179.e8. [Google Scholar] [CrossRef] [PubMed]
- Verbeeck, R.K.; Gunther, G.; Kibuule, D.; Hunter, C.; Rennie, T.W. Optimizing treatment outcome of first-line anti-tuberculosis drugs: The role of therapeutic drug monitoring. Eur. J. Clin. Pharmacol. 2016, 72, 905–916. [Google Scholar] [CrossRef]
- Stephanie, F.; Tambunan, U.S.F.; Siahaan, T.J.M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Life 2022, 12, 1774. [Google Scholar] [CrossRef]
- Somasundaram, S.; Ram, A.; Sankaranarayanan, L. Isoniazid and rifampicin as therapeutic regimen in the current Era: A review. J. Tuberc. Res. 2014, 2, 40–51. [Google Scholar] [CrossRef]
- Stephanie, F.; Saragih, M.; Tambunan, U.S.F.; Siahaan, T.J. Structural Design and Synthesis of Novel Cyclic Peptide Inhibitors Targeting Mycobacterium tuberculosis Transcription. Life 2022, 12, 1333. [Google Scholar] [CrossRef] [PubMed]
- Peek, J.; Lilic, M.; Montiel, D.; Milshteyn, A.; Woodworth, I.; Biggins, J.B.; Ternei, M.A.; Calle, P.Y.; Danziger, M.; Warrier, T.; et al. Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Nat. Commun. 2018, 9, 4147. [Google Scholar] [CrossRef]
- Jwad, R.; Weissberger, D.; Hunter, L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem. Rev. 2020, 120, 9743–9789. [Google Scholar] [CrossRef]
- Bierzyñski, A. Methods of peptide conformation studies. Acta Biochem. Pol. 2001, 48, 1091–1099. [Google Scholar] [CrossRef]
- Okumu, F.W.; Pauletti, G.M.; Vander Velde, D.G.; Siahaan, T.J.; Borchardt, R.T. Effect of restricted conformational flexibility on the permeation of model hexapeptides across Caco-2 cell monolayers. Pharm. Res. 1997, 14, 169–175. [Google Scholar] [CrossRef]
- Borchardt, R.T.; Aube, J.; Siahaan, T.J.; Gangwar, S.; Pauletti, G.M. Improvement of oral peptide bioavailability: Peptidomimetics and prodrug strategies. Adv. Drug Deliv. Rev. 1997, 27, 235–256. [Google Scholar] [CrossRef]
- Floquet, N.; Hery-Huynh, S.; Dauchez, M.; Derreumaux, P.; Tamburro, A.M.; Alix, A.J. Structural characterization of VGVAPG, an elastin-derived peptide. Biopolymers 2004, 76, 266–280. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.R.; Butts, C.P.; Harvey, J.N. Accuracy in determining interproton distances using Nuclear Overhauser Effect data from a flexible molecule. Beilstein J. Org. Chem. 2011, 7, 145–150. [Google Scholar] [CrossRef]
- Hajduk, P.J.; Meadows, R.P.; Fesik, S.W. NMR-based screening in drug discovery. Q. Rev. Biophys. 1999, 32, 211–240. [Google Scholar] [CrossRef]
- Gudmundsson, O.S.; Jois, S.D.; Vander Velde, D.G.; Siahaan, T.J.; Wang, B.; Borchardt, R.T. The effect of conformation on the membrane permeation of coumarinic acid- and phenylpropionic acid-based cyclic prodrugs of opioid peptides. J. Pept. Res. 1999, 53, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Gangwar, S.; Jois, S.D.; Siahaan, T.J.; Vander Velde, D.G.; Stella, V.J.; Borchardt, R.T. The effect of conformation on membrane permeability of an acyloxyalkoxy-linked cyclic prodrug of a model hexapeptide. Pharm. Res. 1996, 13, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Butts, C.P.; Jones, C.R.; Towers, E.C.; Flynn, J.L.; Appleby, L.; Barron, N.J. Interproton distance determinations by NOE--surprising accuracy and precision in a rigid organic molecule. Org. Biomol. Chem. 2011, 9, 177–184. [Google Scholar] [CrossRef]
- Bruschweiler, R.; Case, D.A. Collective NMR relaxation model applied to protein dynamics. Phys. Rev. Lett. 1994, 72, 940–943. [Google Scholar] [CrossRef]
- Wang, S.; Krummenacher, K.; Landrum, G.A.; Sellers, B.D.; Di Lello, P.; Robinson, S.J.; Martin, B.; Holden, J.K.; Tom, J.Y.K.; Murthy, A.C.; et al. Incorporating NOE-Derived Distances in Conformer Generation of Cyclic Peptides with Distance Geometry. J. Chem. Inf. Model. 2022, 62, 472–485. [Google Scholar] [CrossRef]
- Huang, H.; Damjanovic, J.; Miao, J.; Lin, Y.S. Cyclic peptides: Backbone rigidification and capability of mimicking motifs at protein-protein interfaces. Phys. Chem. Chem. Phys. 2021, 23, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 2012, 20, 19–26. [Google Scholar] [CrossRef]
- Bystrov, V.F. Spin-spin coupling and the conformational states of peptide systems. Prog. Nucl. Magn. Reson. Spectrosc. 1976, 10, 41–82. [Google Scholar] [CrossRef]
- Jois, S.D.; Tambunan, U.S.; Chakrabarti, S.; Siahaan, T.J. Solution structure of a cyclic RGD peptide that inhibits platelet aggregation. J. Biomol. Struct. Dyn. 1996, 14, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Sanner, M.F. AutoDock CrankPep: Combining folding and docking to predict protein-peptide complexes. Bioinformatics 2019, 35, 5121–5127. [Google Scholar] [CrossRef]
- Tan, K.P.; Singh, K.; Hazra, A.; Madhusudhan, M.S. Peptide bond planarity constrains hydrogen bond geometry and influences secondary structure conformations. Curr. Res. Struct. Biol. 2021, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Krieger, E.; Vriend, G. YASARA View—Molecular graphics for all devices—From smartphones to workstations. Bioinformatics 2014, 30, 2981–2982. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Dunehoo, A.L.; Anderson, M.; Majumdar, S.; Kobayashi, N.; Berkland, C.; Siahaan, T.J. Cell adhesion molecules for targeted drug delivery. J. Pharm. Sci. 2006, 95, 1856–1872. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
Residue | Chemical Shift (δ) | |||
---|---|---|---|---|
HN | Hα | Hβ | Other | |
Ac | 1.85 (CH3) | |||
Cys-1 | 8.23 | 4.62 | 2.80, 3.28 | |
Leu-2 | 8.24 | 4.06 | 1.31 | 1.40 (Hγ); 0.75, 0.80 (Hδ1, Hδ2) |
Tyr-3 | 7.96 | 4.20 | 2.77, 3.01 | 6.97 (Ar. H2, H6); 6.64 (Ar. H3, H5); 9.19 (OH) |
His-4 | 8.38 | 4.36 | 3.09 | 8.95 (Ar. H2), 6.98 (NH), 7.29 (Ar. H4) |
Phe-5 | 8.28 | 4.40 | 2.92, 3.17 | 7.12 (Ar. H2, H6); 7.26 (Ar. H3, H5) |
Cys-6 | 8.38 | 4.19 | 3.07, 3.22 |
Residue | Δδ/ΔT (ppb/K) | Equation | R2 |
---|---|---|---|
Cys1 | 4.43 | y = 9.55 × 103 − 4.43x | 0.99 |
Leu2 | 2.57 | y = 9.01 × 103 − 2.57x | 0.99 |
Tyr3 | 1.64 | y = 8.45 × 103 − 1.64x | 0.97 |
His4 | 6.21 | y = 1.02 × 104 − 6.21x | 1.00 |
Phe5 | 5.86 | y = 1 × 104 − 5.86x | 0.99 |
Cys6 | 3.86 | y = 9.53 × 103 − 3.86x | 0.99 |
Cross-Peaks | HN | HN | HCα | HCα | HCβ | HCβ | HCδ | Others | Intensity | Distance |
---|---|---|---|---|---|---|---|---|---|---|
NH-NH | Leu2 | Tyr3 | 0.2872 | 2.12 | ||||||
Tyr3 | His4 | 0.1752 | 2.30 | |||||||
NH-HCα | Cys1 | Cys1 | 0.7648 | 1.80 | ||||||
Leu2 | Leu2 | 0.2047 | 2.24 | |||||||
Tyr3 | Tyr3 | 0.2278 | 2.20 | |||||||
His4 | His4 | 0.8717 | 1.76 | |||||||
Phe5 | Phe5 | 0.2474 | 2.17 | |||||||
Cys6 | Cys6 | 0.9081 | 1.75 | |||||||
Leu2 | Tyr3 | 0.2318 | 2.20 | |||||||
Leu2 | His4 | 0.1126 | 2.48 | |||||||
Phe5 | Cys6 | 0.3367 | 2.06 | |||||||
Cys1 | His4 | 0.0443 | 2.89 | |||||||
Cys1 | Tyr3 | 0.0315 | 3.06 | |||||||
NH-HCβ | Cys1 | Cys1 | 0.3367/0.2247 | 2.06/2.21 | ||||||
Leu2 | Leu2 | 0.2691 | 2.14 | |||||||
Tyr3 | Tyr3 | 0.1416/0.0778 | 2.38/2.63 | |||||||
His4 | His4 | - | - | |||||||
Phe5 | Phe5 | 0.1114 | 2.48 | |||||||
Cys6 | Cys6 | - | - | |||||||
Leu2 | Tyr3 | 0.0858 | 2.59 | |||||||
His4 | Phe5 | 0.1477 | 2.37 | |||||||
Leu2 | His4/Cys6 | 0.0232 | 3.22 | |||||||
Tyr3 | His4/Cys6 | 0.1905 | 2.27 | |||||||
HCα-HCα | Cys1 | Leu2 | 0.0377 | 2.97 | ||||||
Cys1 | His4 | 0.2369 | 2.19 | |||||||
Phe5 | Cys6 | 0.0857 | 2.59 | |||||||
HCα-HCβ | Cys1 | Cys1 | 0.1782 | 2.29 | ||||||
Leu2 | Leu2 | 0.2842 | 2.12 | |||||||
Tyr3 | Tyr3 | 0.1998 | 2.25 | |||||||
His4 | His4 | 0.2215 | 2.21 | |||||||
Phe5 | Phe5 | 0.1881 | 2.27 | |||||||
Cys6 | Cys6 | 0.6672 | 1.84 | |||||||
Cys1 | Leu2 | 0.0439 | 2.90 | |||||||
Cys1 | His4 | 0.1161 | 2.46 | |||||||
Leu2 | Tyr3 | 0.0302 | 3.08 | |||||||
HCβ-HCβ | Cys1 | Cys1 | 1.1342 | 1.69 | ||||||
Tyr3 | Tyr3 | 0.9626 | 1.73 | |||||||
Phe5 | Phe5 | 0.8462 | 1.77 | |||||||
Others | Leu2 | Leu2 | 0.1588/0.0482 | 2.34/2.85 | ||||||
Cys1 | Ac | 0.0284 | 3.12 | |||||||
Cys1 | Ac | 0.4131 | 1.99 | |||||||
Leu2 | Leu2 | 0.0434 | 2.90 |
Residue | 3JNH-HCα | X1 | X2 | θ1 | θ2 | φ1 | φ2 | ||
---|---|---|---|---|---|---|---|---|---|
Cys1 | 5.74 | 0.8145 | −0.6975 | 35.46 | 134.23 | 95.46 | 24.54 | −74.23 | −165.77 |
Leu2 | 5.12 | 0.7695 | −0.6525 | 39.69 | 130.73 | 99.69 | 20.31 | −70.73 | −169.27 |
Tyr3 | 8.51 | 0.9892 | −0.8722 | 8.43 | 150.71 | 68.43 | 51.57 | −90.71 | −149.29 |
His4 | 7.63 | 0.9375 | −0.8205 | 20.36 | 145.13 | 80.36 | 39.64 | −85.13 | −154.87 |
Phe5 | Incalculable | ||||||||
Cys6 | 7.63 | 0.9375 | −0.8205 | 20.36 | 145.13 | 80.36 | 39.64 | −85.13 | −154.87 |
Residue | NOE-Restrained | Unrestrained | ||
---|---|---|---|---|
φ | ψ | φ | ψ | |
Cys1 | - | −9.664 | - | 124.62 |
Leu2 | −76.865 | −26.501 | −63.388 | −39.216 |
Tyr3 | −97.081 | −12.468 | −84.140 | 165.283 |
His4 | −84.471 | 32.981 | −67.761 | 138.508 |
Phe5 | −93.392 | −1.589 | 84.087 | 25.35 |
Cys6 | −84.471 | - | −85.510 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stephanie, F.; Tambunan, U.S.F.; Kuczera, K.; Siahaan, T.J. Structure of a Cyclic Peptide as an Inhibitor of Mycobacterium tuberculosis Transcription: NMR and Molecular Dynamics Simulations. Pharmaceuticals 2024, 17, 1545. https://doi.org/10.3390/ph17111545
Stephanie F, Tambunan USF, Kuczera K, Siahaan TJ. Structure of a Cyclic Peptide as an Inhibitor of Mycobacterium tuberculosis Transcription: NMR and Molecular Dynamics Simulations. Pharmaceuticals. 2024; 17(11):1545. https://doi.org/10.3390/ph17111545
Chicago/Turabian StyleStephanie, Filia, Usman Sumo Friend Tambunan, Krzysztof Kuczera, and Teruna J. Siahaan. 2024. "Structure of a Cyclic Peptide as an Inhibitor of Mycobacterium tuberculosis Transcription: NMR and Molecular Dynamics Simulations" Pharmaceuticals 17, no. 11: 1545. https://doi.org/10.3390/ph17111545
APA StyleStephanie, F., Tambunan, U. S. F., Kuczera, K., & Siahaan, T. J. (2024). Structure of a Cyclic Peptide as an Inhibitor of Mycobacterium tuberculosis Transcription: NMR and Molecular Dynamics Simulations. Pharmaceuticals, 17(11), 1545. https://doi.org/10.3390/ph17111545