GPR Antipersonnel Mine Detection Based on Tensor Robust Principal Analysis
Abstract
:1. Introduction
2. Notations and Preliminaries
2.1. Notations
2.2. Principle of the TRPCA
3. Proposed Method
3.1. Problem Formulation and Tensor Construction
3.2. Clutter Suppression via TRPCA
Algorithm 1 The ADMM for TRPCA |
Input: Image tensor Output: Target image tensor Initialize:
|
3.3. Target Detection
- Tensor construction: Equally divide the bandwidth into two sub-bands and form a sub-band GPR image on each sub-band data using the Layered Range Migration (LRM) method [35]. Create the three-dimensional image tensor by inserting the sub-band images as frontal slices.
- TRPCA: Decompose the formed image tensor to separate the low-rank component and the sparse component . The target response is contained in the sparse component .
- Target detection: Calculate the target image by summing up the frontal slices of . Remove clutter residue with thresholds and finally locate the target. The center coordinates of the remaining nonzero regions in the target image are output as the detection results.
4. Results and Discussion
4.1. Metrics and Baselines
4.2. Numerical Simulations
4.3. Laboratory Experiments
4.4. Discussion
- Reconstruction of the target image. As a part of our proposed method, GPR data is migrated using the LRM algorithm. The resolution of the signal is not enough for an accurate shape reconstruction of our mine-like targets but improves the SCR of the image, making the targets look like points with high energy.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, S.; Huang, C.; Su, Y.; Sato, M. 3D Ground Penetrating Radar to Detect Tree Roots and Estimate Root Biomass in the Field. Remote Sens. 2014, 6, 5754–5773. [Google Scholar] [CrossRef] [Green Version]
- Jadoon, K.; Weihermüller, L.; McCabe, M.; Moghadas, D.; Vereecken, H.; Lambot, S. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar. Remote Sens. 2015, 7, 12041–12056. [Google Scholar] [CrossRef] [Green Version]
- Catapano, I.; Ludeno, G.; Soldovieri, F.; Tosti, F.; Padeletti, G. Structural Assessment via Ground Penetrating Radar at the Consoli Palace of Gubbio (Italy). Remote Sens. 2017, 10, 45. [Google Scholar] [CrossRef]
- Dong, Z.; Ye, S.; Gao, Y.; Fang, G.; Zhang, X.; Xue, Z.; Zhang, T. Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR) System. Sensors 2016, 16, 2067. [Google Scholar] [CrossRef]
- Ho, K.C.; Gader, P.D. A linear prediction land mine detection algorithm for hand held ground penetrating radar. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1374–1384. [Google Scholar] [CrossRef]
- Slob, E.; Sato, M.; Olhoeft, G. Surface and borehole ground-penetrating-radar developments. Geophysics 2010, 75, A103–A120. [Google Scholar] [CrossRef]
- Feng, X.; Sato, M.; Liu, C.; Takahashi, K.; Zhang, Y. Topographic Correction of Elevated GPR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 799–804. [Google Scholar] [CrossRef]
- Núñez-Nieto, X.; Solla, M.; Gómez-Pérez, P.; Lorenzo, H. GPR Signal Characterization for Automated Landmine and UXO Detection Based on Machine Learning Techniques. Remote Sens. 2014, 6, 9729–9748. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Podd, F.; van Verre, W.; Daniels, D.; Peyton, A. Investigating the Performance of Bi-Static GPR Antennas for Near-Surface Object Detection. Sensors 2019, 19, 170. [Google Scholar] [CrossRef]
- Kovalenko, V.; Yarovoy, A.G.; Ligthart, L.P. A novel clutter suppression algorithm for landmine detection with GPR. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3740–3751. [Google Scholar] [CrossRef]
- Lopera, O.; Slob, E.C.; Milisavljevic, N.; Lambot, S. Filtering Soil Surface and Antenna Effects From GPR Data to Enhance Landmine Detection. IEEE Trans. Geosci. Remote Sens. 2007, 45, 707–717. [Google Scholar] [CrossRef]
- Tivive, F.H.C.; Bouzerdoum, A.; Abeynayake, C. GPR Target Detection by Joint Sparse and Low-Rank Matrix Decomposition. IEEE Trans. Geosci. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Solimene, R.; Cuccaro, A.; Dell’Aversano, A.; Catapano, I.; Soldovieri, F. Ground Clutter Removal in GPR Surveys. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 792–798. [Google Scholar] [CrossRef]
- Dogaru, T.; Carin, L. Time-Domain Sensing of Targets Buried Under a Rough Air–Ground Interface. IEEE Trans. Antennas Propag. 1998, 46, 360–372. [Google Scholar] [CrossRef]
- Brunzell, H. Detection of shallowly buried objects using impulse radar. IEEE Trans. Geosci. Remote Sens. 1999, 37, 875–886. [Google Scholar] [CrossRef]
- Daniels, D.J. Ground Penetrating Radar, 2nd ed.; IEE: London, UK, 2004. [Google Scholar]
- Karlsen, B.; Larsen, J.; Sorensen, H.B.D.; Jakobsen, K.B. Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection. In Proceedings of the 11th IEEE Signal Processing Workshop Statisttical Signal Processing, Singapore, 8 August 2001; pp. 146–149. [Google Scholar]
- Abujarad, F.; Omar, A. GPR Data Processing Using the Component-Separation Methods PCA and ICA. In Proceedings of the 2006 IEEE International Workshop on Imagining Systems and Techniques, Minori, Italy, 29 April 2006; pp. 60–64. [Google Scholar]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust Principal Component Analysis? J. ACM 2011, 58, 11. [Google Scholar] [CrossRef]
- Kalika, D.; Knox, M.T.; Collins, L.M.; Torrione, P.A.; Morton, K.D. Leveraging Robust Principal Component Analysis To Detect Buried Explosive Threats In Handheld Ground-Penetrating Radar Data. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XX; Bishop, S.S., Isaacs, J.C., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2015; Volume 9454, p. 94541D. [Google Scholar]
- Song, X.; Xiang, D.; Zhou, K.; Su, Y. Improving RPCA-based clutter suppression in GPR detection of antipersonnel mines. IEEE Geosci. Remote. Sens. 2017, 17, 1338–1442. [Google Scholar] [CrossRef]
- Zhang, Z.; Ely, G.; Aeron, S.; Hao, N.; Kilmer, M. Novel Methods for Multilinear Data Completion and De-noising Based on Tensor-SVD. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3842–3849. [Google Scholar]
- Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S. Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5249–5257. [Google Scholar]
- Wei, D.; Wang, A.; Feng, X.; Wang, B.; Wang, B. Tensor Completion Based on Triple Tubal Nuclear Norm. Algorithms 2018, 11, 94. [Google Scholar] [CrossRef]
- Ely, G.; Aeron, S.; Hao, N.; Kilmer, M.E. 5D seismic data completion and denoising using a novel class of tensor decompositions. Geophysics 2015, 80, V83–V95. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Peng, Z. Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef]
- Wang, T.; Keller, J.M.; Gader, P.D.; Sjahputera, O. Frequency sub-band Processing and Feature Analysis of Forward-Looking Ground-Penetrating Radar Signals for Land-Mine Detection. IEEE Trans. Geosci. Remote Sens. 2007, 45, 718–729. [Google Scholar] [CrossRef]
- Webb, A.; Havens, T.C.; Schulz, T.J. Spectral diversity for ground clutter mitigation in forward-looking GPR. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI; Bishop, S.S., Isaacs, J.C., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9823, p. 98231M. [Google Scholar]
- Torrione, P.A.; Throckmorton, C.S.; Collins, L.M. Performance of an adaptive feature-based processor for a wideband ground penetrating radar system. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 644–658. [Google Scholar] [CrossRef]
- Kilmer, M.E.; Martin, C.D. Factorization strategies for third-order tensors. Linear Algebra Appl. 2011, 435, 641–658. [Google Scholar] [CrossRef] [Green Version]
- Masarik, M.P.; Burns, J.; Thelen, B.T.; Kelly, J.; Havens, T.C. GPR anomaly detection with robust principal component analysis. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XX; SPIE: Bellingham, WA, USA, 2015; Volume 9454, p. 945414. [Google Scholar]
- Fan, H.; Chen, Y.; Guo, Y.; Zhang, H.; Kuang, G. Hyperspectral Image Restoration Using Low-Rank Tensor Recovery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4589–4604. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S. Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm. 2018. Available online: http://arxiv.org/abs/1804.03728v1 (accessed on 1 November 2018).
- Zhou, L.; Su, Y. GPR Imaging With RM Algorithm in Layered Mediums. IEEE Geosci. Remote Sens. Lett. 2011, 8, 934–938. [Google Scholar] [CrossRef]
- Giannakis, I.; Giannopoulos, A.; Warren, C. A Realistic FDTD Numerical Modeling Framework of Ground Penetrating Radar for Landmine Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 37–51. [Google Scholar] [CrossRef]
- Counts, T.; Gurbuz, A.C.; Scott, W.R.; McClellan, J.H.; Kim, K. Multistatic Ground-Penetrating Radar Experiments. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2544–2553. [Google Scholar] [CrossRef]
- Scott, W.R. Multistatic Beamforming Data. 2017. Available online: http://waymond-scott.ece.gatech.edu/ multistaticbeamformingdata/multistaticbeamformingdata/ (accessed on 1 December 2017).
- Eldarymli, K.; Mcguire, P.; Power, D.; Moloney, C. Target detection in synthetic aperture radar imagery: A state-of-the-art survey. J. Appl. Remote Sens. 2013, 7, 071598. [Google Scholar] [CrossRef]
- Song, X.; Xiang, D.; Zhou, K.; Su, Y. Fast Prescreening for GPR Antipersonnel Mine Detection via Go Decomposition. IEEE Geosci. Remote Sens. Lett. 2019, 16, 15–19. [Google Scholar] [CrossRef]
- Zhou, T.; Tao, D.; Zhou, T.; Tao, D. GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case. In Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA, 28 June–2 July 2011; ACM: Bellevue, WA, USA, 2011; pp. 33–40. [Google Scholar]
- Giannakis, I.; Giannopoulos, A.; Yarovoy, A. Model-Based Evaluation of Signal-to-Clutter Ratio for Landmine Detection Using Ground-Penetrating Radar. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3564–3573. [Google Scholar] [CrossRef]
- Ghadimi, E.; Teixeira, A.; Shames, I.; Johansson, M. Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM): Quadratic Problems. IEEE Trans. Autom. Control 2015, 60, 644–658. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.H.; Hong, M.; Liao, W.C.; Wang, X. Asynchronous Distributed ADMM for Large-Scale Optimization—Part I: Algorithm and Convergence Analysis. IEEE Trans. Signal Process. 2016, 64, 3118–3130. [Google Scholar] [CrossRef]
- Yarovoy, A.G.; Ligthart, L.P.; Schukin, A.; Kaploun, I. Polarimetric Video Impulse Radar for Landmine Detection. Subsurf. Sens. Technol. Appl. 2002, 3, 271–293. [Google Scholar] [CrossRef]
Notations | Definition |
---|---|
tensor, matrix, vector, scalar | |
real numbers and complex numbers | |
or | the th entry of |
the tube of | |
the ith horizontal or lateral slice of | |
or | the ith frontal slice of |
Fast Fourier Transformation (FFT) on along the third dimension | |
Inverse FFT on along the third dimension | |
norm of , which is computed as | |
infinity norm of , which is defined as | |
Frobenius norm of , which is computed as | |
nuclear norm of , which is computed as sum of singular values | |
spectral norm of , which is defined as the largest singular value |
Imaing | The Proposed Method | PCA-CFAR | RPCA-Based Method | |
---|---|---|---|---|
Simulated data 1 | 5.6 | 29.7 | 12.4 | 20.3 |
Simulated data 2 | 6.7 | 31.5 | 11.4 | 21.0 |
Impulse GPR data 1 | −4.0 | 22.3 | 0.1 | – |
Impulse GPR data 2 | −0.5 | 30.0 | 12.6 | 19.8 |
SFCW GPR data | −10.6 | 26.8 | 0.4 | 17.3 |
The Proposed Method | PCA-CFAR | RPCA-Based Method | |
---|---|---|---|
Simulated dataset | 99.5%/10.0% | 87.0%/67.0% | 93.6%/27.7% |
Impulse GPR dataset | 100%/12.3% | 89.4%/54.5% | 93.3%/10.8% |
SFCW GPR dataset | 100%/7% | 84.6%/19.2% | 100%/8.4% |
The Proposed Method | PCA-CFAR | RPCA-Based Method | |
---|---|---|---|
Time consumption (s) | 0.24 | 3.8 | 0.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Liu, T.; Xiang, D.; Su, Y. GPR Antipersonnel Mine Detection Based on Tensor Robust Principal Analysis. Remote Sens. 2019, 11, 984. https://doi.org/10.3390/rs11080984
Song X, Liu T, Xiang D, Su Y. GPR Antipersonnel Mine Detection Based on Tensor Robust Principal Analysis. Remote Sensing. 2019; 11(8):984. https://doi.org/10.3390/rs11080984
Chicago/Turabian StyleSong, Xiaoji, Tao Liu, Deliang Xiang, and Yi Su. 2019. "GPR Antipersonnel Mine Detection Based on Tensor Robust Principal Analysis" Remote Sensing 11, no. 8: 984. https://doi.org/10.3390/rs11080984
APA StyleSong, X., Liu, T., Xiang, D., & Su, Y. (2019). GPR Antipersonnel Mine Detection Based on Tensor Robust Principal Analysis. Remote Sensing, 11(8), 984. https://doi.org/10.3390/rs11080984