Spectrum- and RGB-D-Based Image Fusion for the Prediction of Nitrogen Accumulation in Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wheat Experiment Design
2.2. Obtaining Wheat Agronomic Parameters
2.3. Wheat Spectrum and Image Data Acquisition
2.4. RGB-D Image Preprocessing
2.4.1. Depth Image Restoration Method
2.4.2. Wheat Canopy Segmentation Method Based on RGB-D Images
2.4.3. RGB-D Image Fusion Method for the Wheat Canopy
2.5. Wheat Canopy Feature Extraction
2.5.1. Spectral Feature Extraction
2.5.2. Feature Extraction of Fused Images
2.6. Evaluation Index of the Fused Image
2.7. Model Establishment and Evaluation Methods
2.7.1. Evaluation Method of the Hole Repair Algorithm
2.7.2. Establishment and Evaluation Method of the Wheat Nitrogen Accumulation Model
3. Results and Analysis
3.1. Hole-Repair Results
3.2. Results of Wheat Canopy Segmentation
3.3. Fused Image Quality Analysis
3.4. Forecast Results of Wheat Nitrogen Accumulation
3.4.1. Feature Screening of Fused Images of the Wheat Canopy
3.4.2. Forecast Results of Nitrogen Accumulation in Wheat during Different Growth Periods
4. Discussion
4.1. Prediction Model Performance of Wheat Nitrogen Accumulation Based on Spectral Characteristics
4.2. Expression Method of Wheat Canopy Structure Based on RGB-D Fused Images
4.3. Generalization Ability of the Wheat Nitrogen Accumulation Prediction Model
5. Conclusions
- (1)
- We proposed a hole-filling algorithm with depth information. When T = 40 mm, the repair accuracy is the best (RMSE = 11.44), effectively avoiding the loss of features due to information loss.
- (2)
- We used IHS transformation to fuse RGB images and depth images. The textural features of the fused images contain depth information, which can break through the limitation of extracting canopy structure features from a two-dimensional image and express the three-dimensional structure information of wheat canopy.
- (3)
- Our test results revealed that in different models, the combination of the characteristics of the fused image with the spectral characteristics can predict nitrogen accumulation in wheat more accurately. In the prediction of a full growth period, the best prediction accuracy values (R2) of the combined features for LNA and SNA were 0.74 and 0.73, respectively, with corresponding RRMSEs of 40.13% and 35.73%, indicating good predictive ability.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sutton, M.A.; Oenema, O.; Erisman, J.W.; Leip, A.; van Grinsven, H.; Winiwarter, W. Too much of a good thing. Nature 2011, 472, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2015, 100, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Filella, I.; Serrano, L.; Serra, J.; Peuelas, J. Evaluating Wheat Nitrogen Status with Canopy Reflectance Indices and Discriminant Analysis. Crop Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Hansen, P.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Karcher, D.E.; Richardson, M.D. Quantifying Turfgrass Color Using Digital Image Analysis. Crop Sci. 2003, 43, 943–951. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, B.-W. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis. Eur. J. Agron. 2013, 48, 57–65. [Google Scholar] [CrossRef]
- Broge, N.H.; Mortensen, J.V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens. Environ. 2002, 81, 45–57. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.-B.; Wang, Z.; Hank, T. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens. Environ. 2020, 242, 111758. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Kefauver, S.C.; Vergara-Diaz, O.; Zaman-Allah, M.A.; Prasanna, B.M.; Cairns, J.E.; Araus, J.L. Comparative Performance of Ground vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization. Front. Plant Sci. 2017, 8, 2004. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, S.; Khot, L.R.; Carter, A.H. Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand. Comput. Electron. Agric. 2015, 118, 372–379. [Google Scholar] [CrossRef]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Knyazikhin, Y.; Schull, M.A.; Stenberg, P.; Mottus, M.; Rautiainen, M.; Yang, Y.; Marshak, A.; Carmona, P.L.; Kaufmann, R.K.; Lewis, P. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl. Acad. Sci. USA 2012, 110, E185–E192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Peñuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Rorie, R.L.; Purcell, L.C.; Karcher, D.E.; King, C.A. The Assessment of Leaf Nitrogen in Corn from Digital Images. Crop Sci. 2011, 51, 2174–2180. [Google Scholar] [CrossRef] [Green Version]
- Fernández, E.; Gorchs, G.; Serrano, L.; Lightfoot, D.A. Use of consumer-grade cameras to assess wheat N status and grain yield. PLoS ONE 2019, 14, e0211889. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Gallego, J.A.; Kefauver, S.C.; Gutiérrez, N.A.; Nieto-Taladriz, M.T.; Araus, J.L. Wheat ear counting in-field conditions: High throughput and low-cost approach using RGB images. Plant Methods 2018, 14, 22. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, D.; Shi, P.; Omasa, K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods 2014, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, Q.; Huang, D. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- Jay, S.; Rabatel, G.; Hadoux, X.; Moura, D.; Gorretta, N. In-field crop row phenotyping from 3D modeling performed using Structure from Motion. Comput. Electron. Agric. 2015, 110, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Andujar, D.; Dorado, J.; Bengochea-Guevara, J.M.; Conesa-Munoz, J.; Fernandez-Quintanilla, C.; Ribeiro, A. Influence of Wind Speed on RGB-D Images in Tree Plantations. Sensors 2017, 17, 914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Li, C.; Paterson, A.H.; Sun, S.; Xu, R.; Robertson, J. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera. Front. Plant Sci. 2018, 8, 2233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andújar, D.; Ribeiro, A.; Fernández-Quintanilla, C.; Dorado, J. Using depth cameras to extract structural parameters to assess the growth state and yield of cauliflower crops. Comput. Electron. Agric. 2016, 122, 67–73. [Google Scholar] [CrossRef]
- Peteinatos, G.G.; Weis, M.; Andújar, D.; Ayala, V.R.; Gerhards, R. Potential use of ground-based sensor technologies for weed detection. Pest Manag. Sci. 2014, 70, 190–199. [Google Scholar] [CrossRef]
- Coy, A.; Rankine, D.; Taylor, M.; Nielsen, D.C.; Cohen, J. Increasing the Accuracy and Automation of Fractional Vegetation Cover Estimation from Digital Photographs. Remote Sens. 2016, 8, 474. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Fang, S.; Peng, Y.; Gong, Y.; Zhu, R.; Wu, X.; Ma, Y.; Duan, B.; Liu, J. UAV-Based Biomass Estimation for Rice-Combining Spectral, TIN-Based Structural and Meteorological Features. Remote Sens. 2019, 11, 890. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.Y.; Shao, L. RGB-D Data Fusion in Complex Space. In Proceedings of the 2017 24th IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1965–1969. [Google Scholar]
- Li, H.; Lin, W.; Pang, F.; Jiang, X.; Ni, J. Monitoring Wheat Growth Using a Portable Three-Band Instrument for Crop Growth Monitoring and Diagnosis. Sensors 2020, 20, 2894. [Google Scholar] [CrossRef]
- Feng, W.; Yao, X.; Zhu, Y.; Tian, Y.C.; Cao, W.X. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 2008, 28, 394–404. [Google Scholar] [CrossRef]
- Maheswari, G.U.; Ramar, K.; Manimegalai, D.; Gomathi, V. An adaptive region based color texture segmentation using fuzzified distance metric. Appl. Soft Comput. 2011, 11, 2916–2924. [Google Scholar] [CrossRef]
- Li, H.J.; Zhang, Y.M.; Lei, Y.P.; Antoniuk, V.; Hu, C.S. Evaluating Different Non-Destructive Estimation Methods for Winter Wheat (Triticum aestivum L.) Nitrogen Status Based on Canopy Spectrum. Remote Sens. 2020, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Zhu, Y.; Tian, Y.C.; Feng, W.; Cao, W.X. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 89–100. [Google Scholar] [CrossRef]
- He, L.; Zhang, H.Y.; Zhang, Y.S.; Song, X.; Guo, T.C. Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. Eur. J. Agron. 2016, 73, 170–185. [Google Scholar] [CrossRef]
- Guo, B.B.; Qi, S.L.; Heng, Y.R.; Duan, J.Z.; Zhang, H.Y.; Wu, Y.P.; Feng, W.; Xie, Y.X.; Zhu, Y.J. Remotely assessing leaf N uptake in winter wheat based on canopy hyperspectral red-edge absorption. Eur. J. Agron. 2017, 82, 113–124. [Google Scholar] [CrossRef]
- Chaivivatrakul, S.; Tang, L.; Dailey, M.N.; Nakarmi, A.D. Automatic morphological trait characterization for corn plants via 3D holographic reconstruction. Comput. Electron. Agric. 2014, 109, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Li, C.; Paterson, A.H. High throughput phenotyping of cotton plant height using depth images under field conditions. Comput. Electron. Agric. 2016, 130, 57–68. [Google Scholar] [CrossRef]
T (mm) | |
---|---|
20 | 21.09 |
30 | 20.32 |
40 | 11.44 |
50 | 14.59 |
Quality | Weak Light | Strong Light | Normal Light | |
---|---|---|---|---|
Original image | Entropy | 6.6657 | 6.8190 | 6.7336 |
Fusion image1 | Entropy | 6.9854 | 7.1891 | 7.1824 |
Cross-entropy | 0.1318 | 0.0896 | 0.0854 | |
Fusion image2 | Entropy | 6.7133 | 6.8487 | 6.8019 |
Cross-entropy | 0.1518 | 0.1147 | 0.1827 |
LNA | SNA | ||||||||
---|---|---|---|---|---|---|---|---|---|
Feature | Model | R2 | RMSE | RRMSE | Feature | Model | R2 | RMSE | RRMSE |
NDRE | LR | 0.37 | 1.03 | 45.47% | NDRE | LR | 0.31 | 2.92 | 47.91% |
RVI | LR | 0.30 | 1.09 | 48.12% | RVI | LR | 0.24 | 3.04 | 49.88% |
F1 | MR | 0.63 | 0.85 | 37.53% | F1 | MR | 0.63 | 2.28 | 37.41% |
F1 | BP | 0.69 | 0.93 | 41.06% | F1 | BP | 0.67 | 2.33 | 38.23% |
F2 | MR | 0.65 | 0.84 | 37.08% | F2 | MR | 0.63 | 2.31 | 37.90% |
F2 | BP | 0.72 | 0.94 | 41.50% | F2 | BP | 0.70 | 2.24 | 36.75% |
F3 | MR | 0.66 | 0.83 | 36.64% | F3 | MR | 0.64 | 2.29 | 37.57% |
F3 | BP | 0.70 | 0.89 | 39.29% | F3 | BP | 0.69 | 2.36 | 38.72% |
LNA | SNA | ||||||||
---|---|---|---|---|---|---|---|---|---|
Feature | Model | R2 | RMSE | RRMSE | Feature | Model | R2 | RMSE | RRMSE |
NDRE | LR | 0.68 | 0.97 | 30.30% | NDRE | LR | 0.72 | 1.24 | 24.20% |
RVI | LR | 0.70 | 0.93 | 29.05% | RVI | LR | 0.72 | 1.23 | 24.01% |
F1 | MR | 0.58 | 1.17 | 36.54% | F1 | MR | 0.62 | 1.63 | 31.81% |
F1 | BP | 0.69 | 1.07 | 33.42% | F1 | BP | 0.71 | 1.57 | 30.64% |
F2 | MR | 0.76 | 0.91 | 28.42% | F2 | MR | 0.80 | 1.20 | 23.42% |
F2 | BP | 0.86 | 1.00 | 31.23% | F2 | BP | 0.88 | 1.09 | 21.27% |
F3 | MR | 0.75 | 0.93 | 29.05% | F3 | MR | 0.81 | 1.19 | 23.23% |
F3 | BP | 0.81 | 0.92 | 28.73% | F3 | BP | 0.86 | 1.06 | 20.69% |
LNA | SNA | ||||||||
---|---|---|---|---|---|---|---|---|---|
Feature | Model | R2 | RMSE | RRMSE | Feature | Model | R2 | RMSE | RRMSE |
NDRE | LR | 0.69 | 2.00 | 35.19% | NDRE | LR | 0.71 | 2.90 | 31.57% |
RVI | LR | 0.70 | 1.99 | 35.01% | RVI | LR | 0.74 | 2.90 | 31.57% |
F1 | MR | 0.71 | 2.08 | 36.60% | F1 | MR | 0.71 | 3.09 | 33.64% |
F1 | BP | 0.76 | 1.70 | 29.91% | F1 | BP | 0.82 | 2.16 | 23.52% |
F2 | MR | 0.76 | 1.93 | 33.96% | F2 | MR | 0.78 | 2.78 | 30.27% |
F2 | BP | 0.81 | 1.35 | 23.75% | F2 | BP | 0.89 | 1.95 | 21.23% |
F3 | MR | 0.76 | 1.92 | 33.78% | F3 | MR | 0.78 | 2.76 | 30.05% |
F3 | BP | 0.80 | 1.99 | 35.01% | F3 | BP | 0.83 | 2.38 | 25.91% |
LNA | SNA | ||||||||
---|---|---|---|---|---|---|---|---|---|
Feature | Model | R2 | RMSE | RRMSE | Feature | Model | R2 | RMSE | RRMSE |
NDRE | LR | 0.71 | 1.68 | 38.19% | NDRE | LR | 0.77 | 2.87 | 32.08% |
RVI | LR | 0.74 | 1.61 | 36.60% | RVI | LR | 0.79 | 2.71 | 30.29% |
F1 | MR | 0.63 | 2.04 | 46.37% | F1 | MR | 0.79 | 2.62 | 29.28% |
F1 | BP | 0.74 | 1.60 | 36.37% | F1 | BP | 0.78 | 2.49 | 27.83% |
F2 | MR | 0.76 | 1.93 | 43.87% | F2 | MR | 0.84 | 2.48 | 27.72% |
F2 | BP | 0.87 | 1.17 | 26.59% | F2 | BP | 0.88 | 2.36 | 26.38% |
F3 | MR | 0.77 | 1.65 | 37.51% | F3 | MR | 0.82 | 2.79 | 31.18% |
F3 | BP | 0.84 | 1.40 | 31.82% | F3 | BP | 0.87 | 2.18 | 24.36% |
LNA | SNA | ||||||||
---|---|---|---|---|---|---|---|---|---|
Feature | Model | R2 | RMSE | RRMSE | Feature | Model | R2 | RMSE | RRMSE |
NDRE | LR | 0.63 | 1.75 | 45.02% | NDRE | LR | 0.56 | 3.16 | 43.42% |
RVI | LR | 0.66 | 1.68 | 43.22% | RVI | LR | 0.59 | 3.05 | 41.91% |
F1 | MR | 0.46 | 2.12 | 54.53% | F1 | MR | 0.54 | 3.29 | 45.21% |
F1 | BP | 0.61 | 2.15 | 55.31% | F1 | BP | 0.66 | 2.83 | 38.89% |
F2 | MR | 0.72 | 1.53 | 39.36% | F2 | MR | 0.70 | 2.66 | 36.55% |
F2 | BP | 0.74 | 1.56 | 40.13% | F2 | BP | 0.73 | 2.60 | 35.73% |
F3 | MR | 0.70 | 1.58 | 40.64% | F3 | MR | 0.68 | 2.72 | 37.38% |
F3 | BP | 0.77 | 1.29 | 33.18% | F3 | BP | 0.71 | 2.67 | 36.69% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Zhang, J.; Li, H.; Cao, W.; Zhu, Y.; Jiang, X.; Ni, J. Spectrum- and RGB-D-Based Image Fusion for the Prediction of Nitrogen Accumulation in Wheat. Remote Sens. 2020, 12, 4040. https://doi.org/10.3390/rs12244040
Xu K, Zhang J, Li H, Cao W, Zhu Y, Jiang X, Ni J. Spectrum- and RGB-D-Based Image Fusion for the Prediction of Nitrogen Accumulation in Wheat. Remote Sensing. 2020; 12(24):4040. https://doi.org/10.3390/rs12244040
Chicago/Turabian StyleXu, Ke, Jingchao Zhang, Huaimin Li, Weixing Cao, Yan Zhu, Xiaoping Jiang, and Jun Ni. 2020. "Spectrum- and RGB-D-Based Image Fusion for the Prediction of Nitrogen Accumulation in Wheat" Remote Sensing 12, no. 24: 4040. https://doi.org/10.3390/rs12244040