An Adaptive Decomposition Approach with Dipole Aggregation Model for Polarimetric SAR Data
Abstract
:1. Introduction
2. The Principle and Problems of FDD
3. Adaptive Decomposition Approach with Aggregation Model
3.1. Dipole Aggregation Model
3.2. The Algorithm of ADAM
4. Experiments on Space-Borne PolSAR Data
4.1. Experiment Scheme
4.2. Interpretation of Results
4.2.1. Physical Meaning of Aggregation Parameter
4.2.2. Comparison of ADAM, FDD and 7CD
5. Discussion
5.1. Time Efficiency of ADAM
5.2. Simple and Clear Physical Meaning of ADAM
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramsey, E., III; Rangoonwala, A.; Suzuoki, Y.; Jones, C.E. Oil detection in a coastal marsh with polarimetric synthetic aperture radar (SAR). Remote Sens. 2011, 3, 2630–2662. [Google Scholar] [CrossRef] [Green Version]
- Valcarce-Diñeiro, R.; Arias-Pérez, B.; Lopez-Sanchez, J.M.; Sánchez, N. Multi-temporal dual-and quad-polarimetric synthetic aperture radar data for crop-type mapping. Remote Sens. 2019, 11, 1518. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.; Marino, A. Quad-polarimetric multi-Scale analysis of icebergs in ALOS-2 SAR data: A comparison between icebergs in west and east greenland. Remote Sens. 2020, 12, 1864. [Google Scholar] [CrossRef]
- Quan, S.; Xiong, B.; Xiang, D.; Hu, C.; Kuang, G. Scattering characterization of obliquely oriented buildings from PolSAR data using eigenvalue-related model. Remote Sens. 2019, 11, 581. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A.; Durden, S.L. Three-component scattering model to describe polarimetric SAR data. In Proceedings of the International Society for Optics and Photonics, San Diego, CA, USA, 12 February 1993. [Google Scholar]
- Wiederkehr, N.C.; Gama, F.F.; Castro, P.B.N.; Bispo, P.d.C.; Balzter, H.; Sano, E.E.; Liesenberg, V.; Santos, J.R.; Mura, J.C. Discriminating forest successional stages, forest degradation, and land use in central amazon using alos/palsar-2 full-polarimetric data. Remote Sens. 2020, 12, 3512. [Google Scholar] [CrossRef]
- White, L.; McGovern, M.; Hayne, S.; Touzi, R.; Pasher, J.; Duffe, J. Investigating the potential use of radarsat-2 and uas imagery for monitoring the restoration of peatlands. Remote Sens. 2020, 12, 2383. [Google Scholar] [CrossRef]
- Omari, K.; Chenier, R.; Touzi, R.; Sagram, M. Investigation of C-band SAR polarimetry for mapping a high-tidal coastal environment in northern Canada. Remote Sens. 2020, 12, 1941. [Google Scholar] [CrossRef]
- Xie, Q.; Ballester-Berman, J.D.; Lopez-Sanchez, J.M.; Zhu, J.; Wang, C. Quantitative analysis of polarimetric model-based decomposition methods. Remote Sens. 2016, 8, 977. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.; Kelly, R. Observations of a coniferous forest at 9.6 and 17.2 ghz: Implications for swe retrievals. Remote Sens. 2019, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-W.; Li, Y.-Z.; Wang, X.-S.; Xiao, S.-P.; Sato, M. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives. IEEE Signal Process. Mag. 2014, 31, 79–89. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- van Zyl, J.J.; Arii, M.; Kim, Y. Requirements for model-based polarimetric decompositions. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008. [Google Scholar]
- Lee, J.; Ainsworth, T.L.; Wang, Y. Generalized polarimetric model-based decompositions using incoherent scattering models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2474–2491. [Google Scholar] [CrossRef]
- Arii, M.; van Zyl, J.J.; Kim, Y. Adaptive model-based decomposition of polarimetric SAR covariance matrices. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1104–1113. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Sato, A.; Boerner, W.-M.; Sato, R.; Yamada, H. Four-component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Xiao, S.; Sato, M. General polarimetric model-based decomposition for coherency matrix. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1843–1855. [Google Scholar] [CrossRef]
- Xie, Q.; Ballester-Berman, J.D.; Lopez-Sanchez, J.M.; Zhu, J.; Wang, C. On the use of generalized volume scattering models for the improvement of general polarimetric model-based decomposition. Remote Sens. 2017, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Yamaguchi, Y.; Yang, J.; Park, S.-E.; Kobayashi, H.; Singh, G. Three-component power decomposition for polarimetric SAR data based on adaptive volume scatter modeling. Remote Sens. 2012, 4, 1559–1572. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-W.; Wang, X.-S.; Li, Y.-Z.; Sato, M. Adaptive model-based polarimetric decomposition using PolInSAR coherence. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1705–1718. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Liu, X.; Wang, C.; Kuijper, A.; Guthe, S. Demonstration and analysis of an extended adaptive general four-component decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2573–2586. [Google Scholar] [CrossRef]
- Freeman, A. Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2583–2592. [Google Scholar] [CrossRef]
- Li, H.; Li, Q.; Wu, G.; Chen, J.; Liang, S. Adaptive two-component model-based decomposition for polarimetric SAR data without assumption of reflection symmetry. IEEE Trans. Geosci. Remote Sens. 2016, 55, 197–211. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.; Shang, J. An adaptive two-component model-based decomposition on soil moisture estimation for c-band RADARSAT-2 imagery over wheat fields at early growing stages. IEEE Geosci. Remote Sens. Lett. 2016, 13, 414–418. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Arii, M.; van Zyl, J.J.; Kim, Y. A general characterization for polarimetric scattering from vegetation canopies. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3349–3357. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, Q.; Jiao, J. A new volume scattering model for three-component decomposition of polarimetric SAR data. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- An, W.; Cui, Y.; Yang, J. Three-component model-based decomposition for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2732–2739. [Google Scholar]
- Rosenqvist, A.; Shimada, M.; Suzuki, S.; Ohgushi, F.; Tadono, T.; Watanabe, M. Operational performance of the ALOS global systematic acquisition strategy and observation plans for ALOS-2 PALSAR-2. Remote Sens. Environ. 2014, 155, 3–12. [Google Scholar] [CrossRef]
- Fan, H.; Quan, S.; Dai, D.; Wang, X.; Xiao, S. Refined model-based and feature-driven extraction of buildings from PolSAR images. Remote Sens. 2019, 11, 1379. [Google Scholar] [CrossRef] [Green Version]
- Susaki, J.; Kajimoto, M.; Kishimoto, M. Urban density mapping of global megacities from polarimetric SAR images. Remote Sens. Environ. 2014, 155, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Duchêne, C.; Bard, S.; Barillot, X.; Ruas, A.; Trevisan, J.; Holzapfel, F. Quantitative and qualitative description of building orientation. In Proceedings of the 7th ICA Workshop on Progress in Automated Map Generalization, Paris, France, 28–30 April 2003. [Google Scholar]
- Singh, G.; Malik, R.; Mohanty, S.; Rathore, V.S.; Yamada, K.; Umemura, M.; Yamaguchi, Y. Seven-component scattering power decomposition of POLSAR coherency matrix. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8371–8382. [Google Scholar] [CrossRef]
- Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Chen, B.; Wang, S.; Jiao, L.; Stolkin, R.; Liu, H. A three-component fisher-based feature weighting method for supervised PolSAR image classification. IEEE Geosci. Remote Sens. Lett. 2014, 12, 731–735. [Google Scholar] [CrossRef]
- Guinvarc’h, R.; Thirion-Lefevre, L. Cross-polarization amplitudes of obliquely orientated buildings with application to urban Areas. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1913–1917. [Google Scholar] [CrossRef]
- Hong, S.-H.; Wdowinski, S. Double-bounce component in cross-polarimetric SAR from a new scattering target decomposition. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3039–3051. [Google Scholar] [CrossRef]
- Xiang, D.; Tang, T.; Hu, C.; Fan, Q.; Su, Y. Built-up area extraction from PolSAR imagery with model-based decomposition and polarimetric coherence. Remote Sens. 2016, 8, 685. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Wang, J.; Shang, J. Simplified adaptive volume scattering model and scattering analysis of crops over agricultural fields using the RADARSAT-2 polarimetric synthetic aperture radar imagery. J. Appl. Remote Sens. 2015, 9, 096026. [Google Scholar] [CrossRef]
- Van Zyl, J.J. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. Geosci. Remote Sens. 1989, 27, 36–45. [Google Scholar] [CrossRef]
Dipole-Based Model | ||
---|---|---|
0 |
Aggregation Parameter γ | ||
---|---|---|
Mean | STD | |
20° oriented building | 1.07 | 0.76 |
40° oriented building | 1.76 | 1.23 |
45° oriented building | 2.39 | 1.67 |
50° oriented building | 2.15 | 1.6 |
70° oriented building | 1.01 | 0.53 |
80° oriented building | 0.68 | 0.35 |
Forest | 1.86 | 0.76 |
Water | 0.42 | 0.11 |
Ps | Mean | STD | ||||
---|---|---|---|---|---|---|
San Francisco, USA | ADAM | FDD | 7CD | ADAM | FDD | 7CD |
20° oriented building | 0.09 | 0.06 | 0.28 | 0.08 | 0.15 | 0.12 |
40° oriented building | 0.05 | -0.08 | 0.29 | 0.07 | 0.21 | 0.20 |
45° oriented building | 0.07 | 0.04 | 0.21 | 0.06 | 0.11 | 0.13 |
50° oriented building | 0.05 | −0.03 | 0.22 | 0.05 | 0.13 | 0.09 |
70° oriented building | 0.11 | 0.10 | 0.27 | 0.09 | 0.12 | 0.15 |
80° oriented building | 0.12 | 0.21 | 0.34 | 0.08 | 0.13 | 0.17 |
Forest | 0.04 | 0.02 | 0.10 | 0.03 | 0.05 | 0.05 |
Water | 0.05 | 0.05 | 0.06 | 0.01 | 0.01 | 0.01 |
Pd | Mean | STD | ||||
---|---|---|---|---|---|---|
San Francisco, USA | ADAM | FDD | 7CD | ADAM | FDD | 7CD |
20° oriented building | 0.19 | 0.15 | 0.16 | 0.11 | 0.13 | 0.08 |
40° oriented building | 0.20 | 0.02 | 0.13 | 0.16 | 0.23 | 0.10 |
45° oriented building | 0.12 | 0.08 | 0.11 | 0.09 | 0.14 | 0.08 |
50° oriented building | 0.11 | 0.01 | 0.11 | 0.05 | 0.12 | 0.04 |
60° oriented building | 0.18 | 0.18 | 0.17 | 0.12 | 0.13 | 0.10 |
70° oriented building | 0.43 | 0.50 | 0.45 | 0.30 | 0.31 | 0.29 |
Forest | 0.03 | 0.01 | 0.04 | 0.02 | 0.02 | 0.02 |
Water | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Pv | Mean | STD | ||||
---|---|---|---|---|---|---|
San Francisco, USA | ADAM | FDD | 7CD | ADAM | FDD | 7CD |
20° oriented building | 0.43 | 0.50 | −0.02 | 0.14 | 0.18 | 0.18 |
40° oriented building | 0.60 | 0.95 | 0.13 | 0.41 | 0.71 | 0.25 |
45° oriented building | 0.32 | 0.40 | 0.07 | 0.17 | 0.22 | 0.14 |
50° oriented building | 0.38 | 0.58 | 0.21 | 0.14 | 0.25 | 0.17 |
60° oriented building | 0.33 | 0.34 | −0.07 | 0.15 | 0.16 | 0.16 |
70° oriented building | 0.43 | 0.29 | −0.23 | 0.17 | 0.11 | 0.24 |
Forest | 0.14 | 0.19 | 0.07 | 0.07 | 0.10 | 0.06 |
Water | 0.02 | 0.01 | −0.01 | 0.00 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zeng, Q.; Jiao, J. An Adaptive Decomposition Approach with Dipole Aggregation Model for Polarimetric SAR Data. Remote Sens. 2021, 13, 2583. https://doi.org/10.3390/rs13132583
Wang Z, Zeng Q, Jiao J. An Adaptive Decomposition Approach with Dipole Aggregation Model for Polarimetric SAR Data. Remote Sensing. 2021; 13(13):2583. https://doi.org/10.3390/rs13132583
Chicago/Turabian StyleWang, Zezhong, Qiming Zeng, and Jian Jiao. 2021. "An Adaptive Decomposition Approach with Dipole Aggregation Model for Polarimetric SAR Data" Remote Sensing 13, no. 13: 2583. https://doi.org/10.3390/rs13132583
APA StyleWang, Z., Zeng, Q., & Jiao, J. (2021). An Adaptive Decomposition Approach with Dipole Aggregation Model for Polarimetric SAR Data. Remote Sensing, 13(13), 2583. https://doi.org/10.3390/rs13132583