Variabilities in PM2.5 and Black Carbon Surface Concentrations Reproduced by Aerosol Optical Properties Estimated by In-Situ Data, Ground Based Remote Sensing and Modeling
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Datasets
2.1.1. Profiles of the Aerosol Extinction Coefficient from MAX-DOAS
2.1.2. Aerosol Optical Properties from the Sky Radiometer
2.1.3. Mass Concentrations of BC
2.1.4. Mass Concentrations of PM2.5
2.1.5. MERRA-2 Reanalysis
Instrument | Measurements | Wavelength (nm) | Retrieved Parameter | Time Resolution (min) | References |
---|---|---|---|---|---|
COSMOS | Transmittance of light | 565 | Ambient BC mass conc. | 10 * | Kondo et al. [29] |
POM-02 (skyradiometer) | Direct and angular sky radiance | 340, 380, 400, 500, 675, 870, 1020 | AOD, AAOD, SSA, FMF | 10 ** | Mok et al. [22]; Hashimoto et al. [23] |
Compact PM2.5 | Light scattering intensity | 625 | PM2.5 | 1 | Nakayama et al. [33] |
MAX-DOAS | Scattered sunlight | 310–515 | AOD, AEC [0–1 km] | 15 | Irie et al. [20,21] |
2.2. Methods
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPPC. Climate Change 2013: The Physical Basis. In Contribution of the Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Rowe, P.M.; Cordero, R.R.; Warren, S.G.; Stewart, E.; Doherty, S.J.; Pankow, A.; Schrempf, M.; Casassa, G.; Carrasco, J.; Pizarro, J.; et al. Black carbon and other light-absorbing impurities in snow in the Chilean Andes. Sci. Rep. 2019, 9, 4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implication for air quality studies. Geophys. Res. Lett. 2003, 30, 2095. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, U.; Ahn, M.H.; Kim, J.H.; Park, R.J.; Lee, H.; Song, C.H.; Choi, Y.S.; Lee, K.H.; Yoo, J.M.; et al. New era of air quality monitoring from space: Geostationary environment monitoring spectrometer (GEMS). Bull. Am. Meteorol. Soc. 2020, 101, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Damiani, A.; Irie, H.; Horio, T.; Takamura, T.; Khatri, P.; Takenaka, H.; Nagao, T.; Nakajima, T.Y.; Cordero, R. Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements. Atmos. Meas. Tech. 2018, 11, 2501–2521. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Weng, F.; Li, Z.; Cribb, M.C. Hourly PM2.5 estimates from a geostationary satellite based on an ensemble learning algorithm and their spatiotemporal patterns over Central East China. Remote Sens. 2019, 11, 2120. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Rui, X.; Fan, Y. Critical review of methods to estimate PM2.5 concentrations within specified research region. Int. J. Geo-Inf. 2018, 7, 368. [Google Scholar] [CrossRef] [Green Version]
- Bao, F.; Cheng, T.; Li, Y.; Gu, X.; Guo, H.; Wu, Y.; Wang, Y.; Gao, J. Retrieval of black carbon aerosol surface concentration using satellite remote sensing observations. Remote Sens. Environ. 2019, 226, 93–108. [Google Scholar] [CrossRef]
- Conrad, B.M.; Johnson, M.R. Mass absorption cross-section of flare-generated black carbon: Variability, predictive model, and implications. Carbon 2019, 149, 760–771. [Google Scholar] [CrossRef]
- McMeeking, G.R.; Good, N.; Petters, M.D.; McFiggans, G.; Coe, H. Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere. Atmos. Chem. Phys. 2011, 11, 5099–5112. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Allan, J.; Whitehead, J.; Young, D.; Flynn, M.; Coe, H.; McFiggans, G.; Fleming, Z.L.; Bandy, B. Ambient black carbon particle hygroscopic properties controlled by mixing state and composition. Atmos. Chem. Phys. 2013, 13, 2015–2029. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Herman, J.R.; Ahmad, Z.; Gleason, J. Derivation of aerosol properties from satellite measurements of back- scattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. 1998, 103, 17099–17110. [Google Scholar] [CrossRef]
- Nakajima, T.; Campanelli, M.; Che, Z.; Estellés, V.; Irie, H.; Kim, S.W.; Kim, J.; Liu, D.; Nishizawa, T.; Pandithurai, G.; et al. An overview of and issues with sky radiometer technology and SKYNET. Atmos. Meas. Tech. 2020, 13, 4195–4218. [Google Scholar] [CrossRef]
- Damiani, A.; Irie, H.; Takamura, T.; Kudo, R.; Khatri, P.; Iwabuchi, H.; Masuda, R.; Nagao, T. An intensive campaign-based intercomparison of cloud optical depth from ground and satellite instruments under overcast conditions. SOLA 2019, 15, 198–204. [Google Scholar] [CrossRef]
- Hoque, S.; Irie, H.; Damiani, A.; Momoi, M. Evaluation of the GCOM-C aerosol products using ground-based sky radiometer observations. Remote Sens. 2020, 12, 2661. [Google Scholar] [CrossRef]
- Irie, H.; Yonekawa, D.; Damiani, A.; Hoque, H.M.S.; Sudo, K.; Itahashi, S. Utilizing continuous multi-component MAX-DOAS observations for the near-surface ozone sensitivity diagnosis at Chiba and Tsukuba, Japan for 2013–2019. Prog. Earth Planet. Sci. 2021, 8, 31. [Google Scholar] [CrossRef]
- Hönninger, G.; Von Friedeburg, C.; Platt, U. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos. Chem. Phys. 2004, 4, 231–254. [Google Scholar] [CrossRef] [Green Version]
- Kurucz, R.L. Solar Flux Atlas from 296 to 1300 nm. Natl. Sol. Obs. 1984, 1, 240. [Google Scholar]
- Irie, H.; Nakayama, T.; Shimizu, A.; Yamazaki, A.; Nagai, T.; Uchiyama, A.; Zaizen, Y.; Kagamitani, S.; Matsumi, Y. Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer in Tsukuba, Japan. Atmos. Meas. Tech. 2015, 8, 2775–2788. [Google Scholar] [CrossRef] [Green Version]
- Irie, H.; Kanaya, Y.; Akimoto, H.; Iwabuchi, H.; Shimizu, A.; Aoki, K. First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements. Atmos. Chem. Phys. 2008, 8, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Mok, J.; Krotkov, N.A.; Torres, O.; Jethva, H.; Li, Z.; Kim, J.; Koo, J.; Go, S.; Irie, H.; Labow, G. Comparisons of spectral aerosol single scattering albedo in Seoul, South Korea. Atmos. Meas. Tech. 2018, 11, 2295–2311. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Nakajima, T.; Dubovik, O.; Campanelli, M.; Che, H.; Khatri, P.; Takamura, T.; Pandithurai, G. Development of a new data-processing method for SKYNET sky radiometer observations. Atmos. Meas. Tech. 2012, 5, 2723–2737. [Google Scholar] [CrossRef] [Green Version]
- Campanelli, M.; Estellés, V.; Tomasi, C.; Nakajima, T.; Malvestuto, V.; Martínez-Lozano, J. Application of the SKYRAD Improved Langley plot method for the in situ calibration of CIMEL Sun-sky photometers. Appl. Opt. 2007, 46, 2688–2702. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, A.; Matsunaga, T.; Yamazaki, A. The instrument constant of sky radiometers (POM-02), Part II: Solid view angle 2. Atmos. Meas. Tech. 2018, 11, 5389–5402. [Google Scholar] [CrossRef] [Green Version]
- Khatri, P.; Takamura, T. An algorithm to screen cloud-affected data for sky radiometer data analysis. J. Meteorol. Soc. Jpn. 2009, 87, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Irie, H.; Hoque, H.M.S.; Damiani, A.; Okamoto, H.; Fatmi, A.M.; Khatri, P.; Takamura, T.; Jarupongsakul, T. Simultaneous observations by sky radiometer and MAX-DOAS for characterization of biomass burning plumes in central Thailand in January-April 2016. Atmos. Meas. Tech. 2019, 12, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, Y.; Kondo, Y.; Sahu, L.K.; Imaru, J.; Fukushima, N.; Kano, M. Performance of a newly designed continuous soot monitoring system (COSMOS). J. Environ. Monit. 2008, 10, 1109–1240. [Google Scholar] [CrossRef]
- Kondo, Y.; Sahu, L.; Kuwata, M.; Miyazaki, Y.; Takegawa, N.; Moteki, N.; Imaru, J.; Han, S.; Nakayama, T.; Kim, O.N.T.; et al. Stabilization of the mass absorption cross section of black carbon for filter-based absorption photometry by the use of a heated inlet. Aerosol Sci. Technol. 2009, 43, 741–756. [Google Scholar] [CrossRef]
- Ohata, S.; Kondo, Y.; Moteki, N.; Mori, T.; Yoshida, A.; Sinha, P.R.; Koike, M. Accuracy of black carbon measurements by a filter-based absorption photometer with a heated inlet. Aerosol Sci. Technol. 2019, 53, 1079–1091. [Google Scholar] [CrossRef]
- Kondo, Y.; Sahu, L.; Moteki, N.; Khan, F.; Takegawa, N.; Liu, X.; Koike, M.; Miyakawa, T. Consistency and traceability of black carbon measurements made by laser-induced incandescence, thermal- optical transmittance, and filter-based photo-absorption techniques. Aerosol Sci. Technol. 2011, 45, 295–312. [Google Scholar] [CrossRef]
- Kanaya, Y.; Pan, X.; Miyakawa, T.; Komazaki, Y.; Taketani, F.; Uno, I.; Kondo, Y. Long-term observations of black carbon mass concentrations at Fukue Island, western Japan, during 2009–2015: Constraining wet removal rates and emission strengths from East Asia. Atmos. Chem. Phys. 2016, 16, 10689–10705. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, T.; Matsumi, Y.; Kawahito, K.; Watabe, Y. Development and evaluation of a palm-sized optical PM2.5 sensor. Aerosol Sci. Technol. 2018, 52, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Buchard, V.; Randles, C.A.; Da Silva, A.M.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Hoblen, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. Available online: https://journals.ametsoc.org/view/journals/clim/30/17/jcli-d-16-0609.1.xml (accessed on 13 January 2021). [CrossRef] [PubMed]
- Zheng, C.; Zhao, C.; Zhu, Y.; Wang, Y.; Shi, X.; Wu, X.; Chen, T.; Wu, F.; Qiu, Y. Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing. Atmos. Chem. Phys. 2017, 17, 13473–13489. [Google Scholar] [CrossRef] [Green Version]
- Tao, Z.; Wang, Z.; Yang, S.; Shan, H.; Ma, X.; Zhang, H.; Zhao, S.; Liu, D.; Xie, C.; and Wang, Y. Profiling the PM2.5 mass concentration vertical distribution in the boundary layer. Atmos. Meas. Tech. 2016, 9, 1369–1376. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Lacis, A.A. Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures. J. Geophys. Res. Atmos. 2015, 120, 2037–2052. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessment of aerosol optical properties retrieval from Aerosol Robotic Net- work (AERONET) Sun and sky radiance measurements. J. Geo-Phys. Res. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Ohata, S.; Morino, Y.; Koike, M.; Moteki, N.; Kondo, Y. Changes in black carbon and PM2.5 in Tokyo in 2003–2017. Proc. Jpn. Acad. Ser. B 2020, 96, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, N.; Matsui, I.; Shimizu, A.; Nishizawa, T.; Hara, Y.; Xie, C.; Uno, I.; Yumimoto, K.; Wang, Z.; Yoon, S.C. Lidar network observations of troposheric aerosols. SPIE 2008, 7153, 71530A. [Google Scholar] [CrossRef]
- Lv, L.; Liu, W.; Zhang, T.; Chen, Z.; Dong, Y.; Fan, G.; Xiang, Y.; Yao, Y.; Yang, N.; Chu, B.; et al. Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique. Atmos. Environ. 2017, 164, 360–369. [Google Scholar] [CrossRef]
- Koike, M.; Moteki, N.; Khatri, P.; Takamura, T.; Takegawa, N.; Kondo, Y.; Hashioka, H.; Matsui, H.; Shimizu, A.; Sugimoto, N. Case study of absorption aerosol optical depth closure of black carbon over the East China Sea. J. Geophys. Res. Atmos. 2014, 119, 122–136. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.W. Optical properties of size-resolved aerosol chemistry and visibility variation observed in the urban site of Seoul, Korea. Aerosol Air Qual. Res. 2015, 15, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.W. Time-resolved chemistry measurement to determine the aerosol optical properties using PIXE analysis. J. Korean Phys. Soc. 2011, 59, 189–195. [Google Scholar] [CrossRef]
- Jung, J.; Lee, H.; Kim, Y.J.; Liu, X.; Zhang, Y.; Gu, J.; Fan, S. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. J. Environ. Manag. 2011, 90, 3231–3244. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Ma, X.; He, Y.; Jiang, J.; Wang, X.; Wang, Y.; Sheng, L.; Hu, J.; Yan, N. Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China. Environ. Res. 2017, 156, 239–246. [Google Scholar] [CrossRef]
- Hand, J.L.; Malm, W.C. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. J. Geophys. Res. 2007, 112, D16203. [Google Scholar] [CrossRef]
- Matsui, H. Black carbon simulations using a size- and mixing-state-resolved three-dimensional model: 1. Radiative effects and their uncertainties. J. Geophys. Res. Atmos. 2016, 121, 1793–1807. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Cho, C.; Kim, S.W.; Lee, M.; Lim, S.; Fang, W.; Gustafsson, Ö.; Andersson, A.; Park, R.J.; Sheridan, P.J. Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia. Atmos. Environ. 2019, 212, 65–74. [Google Scholar] [CrossRef]
- Cheng, Y.; He, K.-B.; Zheng, M.; Duan, F.-K.; Du, Z.-Y.; Ma, Y.-L.; Tan, J.-H.; Yang, F.-M.; Liu, J.-M.; Zhang, X.-L.; et al. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmos. Chem. Phys. 2011, 11, 11497–11510. [Google Scholar] [CrossRef] [Green Version]
- Koch, D.; Schulz, M.; Kinne, S.; McNaughton, C.; Spackman, J.R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, T.C.; Boucher, O.; et al. Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys. 2009, 9, 9001–9026. [Google Scholar] [CrossRef] [Green Version]
- Laskin, A.; Laskin, J.; and Nizkorodov, S.A. Chemistry of atmospheric brown carbon. Chem. Rev. 2015, 115, 4335–4382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.; Xu, W.; Wang, J.; Wang, Q.; Liu, D.; Tang, G.; Chen, P.; Du, W.; Zhao, J.; Zhang, Y.; et al. Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China. Atmos. Chem. Phys. 2019, 19, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, K.; Irie, H.; Damiani, A. Black carbon effects on the optical depth of light absorption. Quantitative evaluation of brown carbon contribution from long-term observation with skyradiometer in Chiba. In Proceedings of the 25th Japan Society of Atmospheric Chemistry, Chiba, Japan, 11–13 November 2020. [Google Scholar]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R.R.; Thompson, A.M.; Schafer, J.S. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. 2012, 117, D17203. [Google Scholar] [CrossRef] [Green Version]
- Kirchstetter, T.W.; Novakov, T.; Hobbs, P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 2004, 109, D21208. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Yang, L.S.; Cheng, Y.H. Ambient PM2.5, black carbon, and particle size-resolved number concentrations and the angstrom exponent value of aerosols during the firework display at the lantern festival in Southern Taiwan. Aerosol Air Qual. Res. 2016, 16, 373–387. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, T.; Ikeda, Y.; Sawada, Y.; Setoguchi, Y.; Ogawa, S.; Kawana, K.; Mochida, M.; Ikemori, F.; Matsumoto, K.; Matsumi, Y. Properties of light-absorbing aerosols in the Nagoya urban area, Japan, in August 2011 and January 2012: Contributions of brown carbon and lensing effect. J. Geophys. Res. Atmos. 2014, 119, 721–739. [Google Scholar] [CrossRef]
- Pitchford, M.; Malm, W.; Schichtel, B.; Kumar, N.; Lowenthal, D.; Hand, J. Revised algorithm for estimating light extinction from IMPROVE particle speciation data. J. Air Waste Manag. Assoc. 2007, 57, 1326–1336. [Google Scholar] [CrossRef]
- Damiani, A.; Cordero, R.; Carrasco, J.; Watanabe, S.; Kawamiya, M.; Lagun, V.E. Changes in the UV lambertian equivalent reflectivity in the Southern Ocean: Influence of sea ice and cloudiness. Remote Sens. Environ. 2015, 169, 75–92. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Buchard, V.; da Silva, A.M.; Colarco, P.R.; Darmenov, A.; Randles, C.A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis. Atmos. Chem. Phys. 2015, 15, 5743–5760. [Google Scholar] [CrossRef] [Green Version]
Parameter | Estimate | Location | Reference |
---|---|---|---|
MEC of PM2.5 | 3.4–8.6 m2/g | Worldwide locations | Kim et al. [45] |
MEC of PM2.5 | 4.7 m2/g | Seoul (with RH = 60.1%) | Kim et al. [46] |
MEC of PM2.5 | 3.4 m2/g | Beijing (with RH < 40%) | Jung et al. [47] |
MEE of PM2.5 | 2.87 to 6.64 m2/g | Various cities in China | Cheng et al. [48] |
MEE of PM2.5 | 4.5 m2/g | Developed countries | Hand et al. [49] |
MEE of PM2.5 | 4.4 ± 0.20 m2/g | Chiba (with RH < 50%) | this study |
MAC of BC | 7.0 to 10.5 m2/g | East and South Asia | Matsui [50] |
MAC of BC | 7.5 ± 1.2 m2/g | Worldwide locations | Bond and Bergstrom [51] |
MAC of BC | 4.6 to 11.3 m2/g | East and South Asia | Cho et al. [52] |
MAC of BC | 1.6 to 16.6 m2/g | Worldwide locations | Cheng et al. [53] |
MAC of BC | 2.3 to 10.5 m2/g | AeroCom model intercomparison project | Koch et al. [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damiani, A.; Irie, H.; Yamaguchi, K.; Hoque, H.M.S.; Nakayama, T.; Matsumi, Y.; Kondo, Y.; Da Silva, A. Variabilities in PM2.5 and Black Carbon Surface Concentrations Reproduced by Aerosol Optical Properties Estimated by In-Situ Data, Ground Based Remote Sensing and Modeling. Remote Sens. 2021, 13, 3163. https://doi.org/10.3390/rs13163163
Damiani A, Irie H, Yamaguchi K, Hoque HMS, Nakayama T, Matsumi Y, Kondo Y, Da Silva A. Variabilities in PM2.5 and Black Carbon Surface Concentrations Reproduced by Aerosol Optical Properties Estimated by In-Situ Data, Ground Based Remote Sensing and Modeling. Remote Sensing. 2021; 13(16):3163. https://doi.org/10.3390/rs13163163
Chicago/Turabian StyleDamiani, Alessandro, Hitoshi Irie, Kodai Yamaguchi, Hossain Mohammed Syedul Hoque, Tomoki Nakayama, Yutaka Matsumi, Yutaka Kondo, and Arlindo Da Silva. 2021. "Variabilities in PM2.5 and Black Carbon Surface Concentrations Reproduced by Aerosol Optical Properties Estimated by In-Situ Data, Ground Based Remote Sensing and Modeling" Remote Sensing 13, no. 16: 3163. https://doi.org/10.3390/rs13163163