Soya Yield Prediction on a Within-Field Scale Using Machine Learning Models Trained on Sentinel-2 and Soil Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method Overview
2.2. Data
- Atmospherically Resistant Vegetation Index (ARVI) provides a self-correction process to correct radiance for the atmospheric effect on the RED band [49].
- Soil-Adjusted Vegetation Index (SAVI) is presented to minimize soil brightness influences from spectral vegetation indices [50].
- Visible Atmospherically Resistant Index (VARI) is used to estimate the share of vegetation with low sensitivity to atmospheric effects [53].
- Modified Normalized Difference Water Index (MNDWI) is a modified version of the NDWI index and it is also used to detect water content [55].
- Visible-Band Difference Vegetation Index (VDVI) plays a role in the extraction of vegetation information in visible bands only and it is used to estimate vegetation coverage rate [56].
- Non-linear Index (NLI) is developed using intuition in the physics of interaction between optical radiation and vegetation canopy and using some results of analytical models. This index can minimize the effects of “disturbing” factors and view azimuth as well as soil brightness [57].
- Modified Non-linear Index (MNLI) is modification of NLI, which has an added a soil factor reduction [58].
- Normalised Multi-Band Drought Index (NMDI) is proposed for monitoring soil and vegetation moisture with satellite remote sensing data [59]. It is used for drought detection.
- Green Leaf Index (GLI) is an important determinant of canopy photosynthesis, evapotranspiration and competition among crop plants and weeds [60].
- Excess Green (ExG) vegetation index is provided to determine a near-binary intensity image, which outlines a plant region of interest [61].
- Color Index of Vegetation Extraction (CIVE) is created to separate and emphasize the green plant portion from the background [62].
- Automated Water Extraction Index (AWEI) has a role to increase the contrast between water and other dark surfaces. Moreover, the aim of AWEI is to maximize the separability of water and nonwater pixels through band differencing, addition and applying different coefficients [63].
- Green-Red Vegetation Index (GRVI) is evaluated as phenological indicator based on multiyear stand-level observations of spectral reflectance and phenology [64].
- Green Atmospherically Resistant Index (GARI) is developed and expected to be as resistant to atmospheric effects as ARVI but more sensitive to a wide range of Chlorophyll concentrations [65].
- Difference Vegetation Index (DVI) is used to evaluate and quantify the difference between NIR and RED bands [66].
- Leaf Area Index (LAI) is related to canopy light absorption. It is used to characterise plant canopies [26].
2.3. Preprocessing
2.4. Machine Learning
- Multiple Linear Regression (MLR);
- Support Vector Machine (SVM);
- eXtreme Gradient Boosting (XGB);
- Stochastic Gradient Descent (SGD);
- Random Forest (RF).
2.5. Processing Speed-Up Using High Performance Computing
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Crop Statistics; Food and Agricultre Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 8 February 2022).
- Terzić, D.; Popović, V.; Tatić, M.; Vasileva, V.; Đekić, V.; Ugrenović, V.; Popović, S.; Avdić, P. Soybean area, yield and production in world. In Proceedings of the XXII Eco-Conference® 2018, Ecological Movement of Novi Sad, Novi Sad, Serbia, 26–28 September 2018; pp. 136–145. [Google Scholar]
- Tillie, P.; Rodríguez-Cerezo, E. Markets for non-Genetically Modified, Identity-Preserved soybean in the EU. In JRC Science and Policy Reports; EC: Brussels, Belgium, 2015; pp. 1–72. [Google Scholar]
- James, C. Brief 54: Global Status of Commercialized Biotech/GM Crops; ISAAA: Ithaca, NY, USA, 2018. [Google Scholar]
- Celec, P.; Kukučková, M.; Renczésová, V.; Natarajan, S.; Pálffy, R.; Gardlík, R.; Hodosy, J.; Behuliak, M.; Vlková, B.; Minárik, G.; et al. Biological and biomedical aspects of genetically modified food. Biomed. Pharmacother. 2005, 59, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Hilbeck, A.; Binimelis, R.; Defarge, N.; Steinbrecher, R.; Székács, A.; Wickson, F.; Antoniou, M.; Bereano, P.L.; Clark, E.A.; Hansen, M.; et al. No scientific consensus on GMO safety. Environ. Sci. Eur. 2015, 27, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Casabé, N.; Piola, L.; Fuchs, J.; Oneto, M.L.; Pamparato, L.; Basack, S.; Giménez, R.; Massaro, R.; Papa, J.C.; Kesten, E. Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field. J. Soils Sediments 2007, 7, 232–239. [Google Scholar] [CrossRef]
- Phelinas, P.; Choumert, J. Is GM Soybean cultivation in Argentina sustainable? World Dev. 2017, 99, 452–462. [Google Scholar] [CrossRef] [Green Version]
- Krön, M.; Bittner, U. Danube Soya–Improving European GM-free soya supply for food and feed. OCL 2015, 22, D509. [Google Scholar] [CrossRef]
- Arslan, S.; Colvin, T.S. Grain yield mapping: Yield sensing, yield reconstruction, and errors. Precis. Agric. 2002, 3, 135–154. [Google Scholar] [CrossRef]
- Pierce, F.; Anderson, N.; Colvin, T.; Schueller, J.; Humburg, D.; McLaughlin, N. Yield Mapping. In The State of Site Specific Management for Agriculture; American Society of Agronomy: Madison, WI, USA, 1997; pp. 211–243. [Google Scholar]
- Oksanen, T.; Linkolehto, R.; Seilonen, I. Adapting an industrial automation protocol to remote monitoring of mobile agricultural machinery: A combine harvester with IoT. IFAC-PapersOnLine 2016, 49, 127–131. [Google Scholar] [CrossRef]
- Navalgund, R.R.; Jayaraman, V.; Roy, P. Remote sensing applications: An overview. Curr. Sci. 2007, 93, 1747–1766. [Google Scholar]
- Wu, B.; Meng, J.; Li, Q.; Yan, N.; Du, X.; Zhang, M. Remote sensing-based global crop monitoring: Experiences with China’s CropWatch system. Int. J. Digit. Earth 2014, 7, 113–137. [Google Scholar] [CrossRef]
- Campos, I.; González-Gómez, L.; Villodre, J.; Calera, M.; Campoy, J.; Jiménez, N.; Plaza, C.; Sánchez-Prieto, S.; Calera, A. Mapping within-field variability in wheat yield and biomass using remote sensing vegetation indices. Precis. Agric. 2019, 20, 214–236. [Google Scholar] [CrossRef]
- Campillo, C.; Carrasco, J.; Gordillo, J.; Cordoba, A.; Macua, J. Use of satellite images to differentiate productivity zones in commercial processing tomato farms. In Proceedings of the XV International Symposium on Processing Tomato 1233, Athens, Greece, 11–15 June 2018; pp. 97–104. [Google Scholar]
- Lobell, D.B.; Thau, D.; Seifert, C.; Engle, E.; Little, B. A scalable satellite-based crop yield mapper. Remote Sens. Environ. 2015, 164, 324–333. [Google Scholar] [CrossRef]
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.P.; Freebairn, D.M. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 1996, 50, 255–271. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Van Diepen, C.v.; Wolf, J.v.; Van Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Filippi, P.; Jones, E.J.; Wimalathunge, N.S.; Somarathna, P.D.; Pozza, L.E.; Ugbaje, S.U.; Jephcott, T.G.; Paterson, S.E.; Whelan, B.M.; Bishop, T.F. An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precis. Agric. 2019, 20, 1015–1029. [Google Scholar] [CrossRef]
- Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.; Ciampitti, I.A. Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 2020, 284, 107886. [Google Scholar] [CrossRef]
- Eyre, R.; Lindsay, J.; Laamrani, A.; Berg, A. Within-Field Yield Prediction in Cereal Crops Using LiDAR-Derived Topographic Attributes with Geographically Weighted Regression Models. Remote Sens. 2021, 13, 4152. [Google Scholar] [CrossRef]
- Gaso, D.V.; de Wit, A.; Berger, A.G.; Kooistra, L. Predicting within-field soybean yield variability by coupling Sentinel-2 leaf area index with a crop growth model. Agric. For. Meteorol. 2021, 308, 108553. [Google Scholar] [CrossRef]
- De Wit, A.d.; Van Diepen, C. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agric. For. Meteorol. 2007, 146, 38–56. [Google Scholar] [CrossRef]
- Zhuo, W.; Huang, J.; Li, L.; Zhang, X.; Ma, H.; Gao, X.; Huang, H.; Xu, B.; Xiao, X. Assimilating soil moisture retrieved from Sentinel-1 and Sentinel-2 data into WOFOST model to improve winter wheat yield estimation. Remote Sens. 2019, 11, 1618. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brdar, S.; Culibrk, D.; Marinkovic, B.; Crnobarac, J.; Crnojevic, V. Support vector machines with features contribution analysis for agricultural yield prediction. In Proceedings of the Second International Workshop on Sensing Technologies in Agriculture, Forestry and Environment (EcoSense 2011), Belgrade, Serbia, 30 April–7 May 2011; pp. 43–47. [Google Scholar]
- Khaki, S.; Wang, L. Crop yield prediction using deep neural networks. Front. Plant Sci. 2019, 10, 621. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Li, X.; Low, M.; Lobell, D.; Ermon, S. Deep gaussian process for crop yield prediction based on remote sensing data. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-level soybean yield prediction using deep CNN-LSTM model. Sensors 2019, 19, 4363. [Google Scholar] [CrossRef] [Green Version]
- Khaki, S.; Wang, L.; Archontoulis, S.V. A cnn-rnn framework for crop yield prediction. Front. Plant Sci. 2020, 10, 1750. [Google Scholar] [CrossRef]
- Kaul, M.; Hill, R.L.; Walthall, C. Artificial neural networks for corn and soybean yield prediction. Agric. Syst. 2005, 85, 1–18. [Google Scholar] [CrossRef]
- Marko, O.; Brdar, S.; Panic, M.; Lugonja, P.; Crnojevic, V. Soybean varieties portfolio optimisation based on yield prediction. Comput. Electron. Agric. 2016, 127, 467–474. [Google Scholar] [CrossRef]
- Marko, O.; Brdar, S.; Panić, M.; Šašić, I.; Despotović, D.; Knežević, M.; Crnojević, V. Portfolio optimization for seed selection in diverse weather scenarios. PLoS ONE 2017, 12, e0184198. [Google Scholar] [CrossRef] [Green Version]
- Kross, A.; Znoj, E.; Callegari, D.; Kaur, G.; Sunohara, M.; Lapen, D.R.; McNairn, H. Using artificial neural networks and remotely sensed data to evaluate the relative importance of variables for prediction of within-field corn and soybean yields. Remote Sens. 2020, 12, 2230. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 Mission. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 8 February 2022).
- Pandzić, M.; Mihajlović, D.; Pandzić, J.; Pfeifer, N. Assessment of the geometric quality of sentinel-2 data. In Proceedings of the XXIII ISPRS Congress, Commission I. International Society for Photogrammetry and Remote Sensing, Prague, Czech Republic, 12–19 July 2016; Volume 41, pp. 489–494. [Google Scholar]
- Pedersen, P.; Kumudini, S.; Board, J.; Conley, S. Soybean Growth and Development; SIowa State University, University Extension Ames: Ames, IA, USA, 2004. [Google Scholar]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Huete, A.; Liu, H.; Batchily, K.; Van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Tillack, A.; Clasen, A.; Kleinschmit, B.; Förster, M. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens. Environ. 2014, 141, 52–63. [Google Scholar] [CrossRef]
- Stow, D.; Niphadkar, M.; Kaiser, J. MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. Int. J. Remote Sens. 2005, 26, 3867–3873. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Fuentes, S.; De Bei, R.; Pech, J.; Tyerman, S. Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig. Sci. 2012, 30, 523–536. [Google Scholar] [CrossRef]
- Goel, N.S.; Qin, W. Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation. Remote Sens. Rev. 1994, 10, 309–347. [Google Scholar] [CrossRef]
- Yang, Z.; Willis, P.; Mueller, R. Impact of band-ratio enhanced AWIFS image to crop classification accuracy. Proc. Pecora 2008, 17, 1–11. [Google Scholar]
- Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34, L20405. [Google Scholar] [CrossRef]
- Denison, R.F.; Russotti, R. Field estimates of green leaf area index using laser-induced chlorophyll fluorescence. Field Crops Res. 1997, 52, 143–149. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Kataoka, T.; Kaneko, T.; Okamoto, H.; Hata, S. Crop growth estimation system using machine vision. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 20–24 July 2003; Volume 2, pp. b1079–b1083. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.F., Jr.; Martin, J.D. Industry influence on financial structure. Financ. Manag. 1975, 4, 67–73. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Yan, X.; Su, X. Linear Regression Analysis: Theory and Computing; World Scientific: Singapore, 2009. [Google Scholar]
- Boswell, D. Introduction to Support Vector Machines; Departement of Computer Science and Engineering University of California San Diego: San Diego, CA, USA, 2002. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme Gradient Boosting; R Package Version 0.4-2; The R Foundation: Indianapolis, IL, USA, 2015; Volume 1. [Google Scholar]
- Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 421–436. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Herman, J.; Usher, W. SALib: An open-source Python library for sensitivity analysis. J. Open Source Softw. 2017, 2, 97. [Google Scholar] [CrossRef]
- Zhou, N.; Georgiou, Y.; Pospieszny, M.; Zhong, L.; Zhou, H.; Niethammer, C.; Pejak, B.; Marko, O.; Hoppe, D. Container orchestration on HPC systems through Kubernetes. J. Cloud Comput. 2021, 10, 1–14. [Google Scholar] [CrossRef]
- Dalcin, L.D.; Paz, R.R.; Kler, P.A.; Cosimo, A. Parallel distributed computing using Python. Adv. Water Resour. 2011, 34, 1124–1139. [Google Scholar] [CrossRef]
- Kurtzer, G.M.; Sochat, V.; Bauer, M.W. Singularity: Scientific containers for mobility of compute. PLoS ONE 2017, 12, e0177459. [Google Scholar] [CrossRef] [PubMed]
- Sobol’, I.Y.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Papageorgiou, E.; Aggelopoulou, K.; Gemtos, T.; Nanos, G. Yield prediction in apples using Fuzzy Cognitive Map learning approach. Comput. Electron. Agric. 2013, 91, 19–29. [Google Scholar] [CrossRef]
Sentinel-2 Bands | Abbreviation | Sentinel-2A Central Wavelength (nm) | Sentinel-2B Central Wavelength (nm) | Spatial Resolution (m) |
---|---|---|---|---|
Band 1 | CoastalAerosol | 442.7 | 442.2 | 60 |
Band 2 | BLUE | 492.4 | 492.1 | 10 |
Band 3 | GREEN | 559.8 | 559.0 | 10 |
Band 4 | RED | 664.6 | 664.9 | 10 |
Band 5 | RedEdge | 704.1 | 703.8 | 20 |
Band 6 | RedEdge2 | 740.5 | 739.1 | 20 |
Band 7 | RedEdge3 | 782.8 | 779.7 | 20 |
Band 8 | NIR | 832.8 | 832.9 | 10 |
Band 8A | NIR2 | 864.7 | 864.0 | 20 |
Band 9 | WaterVapour | 945.1 | 943.2 | 60 |
Band 10 | SWIR | 1373.5 | 1376.9 | 60 |
Band 11 | SWIR2 | 1613.7 | 1610.4 | 20 |
Band 12 | SWIR3 | 2202.4 | 2185.7 | 20 |
2018 | 2019 | 2020 | Soya Growth Stage |
---|---|---|---|
8 June | 5 June | 12 June | V5-R2, growing vegetation, bloom |
20 July | 20 July | 27 July | R3-R4, pod formation |
9 August | 9 August | 8 August | R5-R6, seed formation |
Parameter | Description | Units |
---|---|---|
bdod | Bulk density of fine earth fraction | cg/cm |
cec | Cation exchange capacity of soil | mmol(c)/kg |
cfvo | Volumetric fraction of coarse fragments | cm/dm |
clay | Proportion of clay particles in fine earth fraction | g/kg |
nitrogen | Total nitrogen (N) | cg/kg |
ocd | Organic carbon density | hg/dm |
ocs | Organic carbon stocks | t/ha |
phh2o | Soil pH | pH |
sand | Proportion of sand particles in fine earth fraction | g/kg |
silt | Proportion of silt particles in fine earth fraction | g/kg |
soc | Soil organic carbon content in fine earth fraction | dg/kg |
Algorithm | RMSE (kg/pixel) | MAE (kg/pixel) | PCC | SCC | |
---|---|---|---|---|---|
MLR | 6.91 | 5.48 | 0.5 | 0.74 | 0.55 |
SVM | 5.83 | 4.68 | 0.64 | 0.81 | 0.69 |
RF | 6.52 | 5.17 | 0.55 | 0.77 | 0.6 |
XGB | 6.99 | 5.63 | 0.48 | 0.75 | 0.6 |
SGD | 5.53 | 4.36 | 0.68 | 0.83 | 0.73 |
Algorithm | RMSE (kg/pixel) | MAE (kg/pixel) | PCC | SCC | |
---|---|---|---|---|---|
MLR | 12.78 | 9.98 | −0.1 | 0.34 | 0.32 |
SVM | 11.31 | 8.41 | 0.14 | 0.46 | 0.43 |
RF | 11.4 | 8.7 | 0.13 | 0.43 | 0.4 |
XGB | 12.15 | 9.42 | 0.01 | 0.38 | 0.35 |
SGD | 11.19 | 8.49 | 0.16 | 0.45 | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pejak, B.; Lugonja, P.; Antić, A.; Panić, M.; Pandžić, M.; Alexakis, E.; Mavrepis, P.; Zhou, N.; Marko, O.; Crnojević, V. Soya Yield Prediction on a Within-Field Scale Using Machine Learning Models Trained on Sentinel-2 and Soil Data. Remote Sens. 2022, 14, 2256. https://doi.org/10.3390/rs14092256
Pejak B, Lugonja P, Antić A, Panić M, Pandžić M, Alexakis E, Mavrepis P, Zhou N, Marko O, Crnojević V. Soya Yield Prediction on a Within-Field Scale Using Machine Learning Models Trained on Sentinel-2 and Soil Data. Remote Sensing. 2022; 14(9):2256. https://doi.org/10.3390/rs14092256
Chicago/Turabian StylePejak, Branislav, Predrag Lugonja, Aleksandar Antić, Marko Panić, Miloš Pandžić, Emmanouil Alexakis, Philip Mavrepis, Naweiluo Zhou, Oskar Marko, and Vladimir Crnojević. 2022. "Soya Yield Prediction on a Within-Field Scale Using Machine Learning Models Trained on Sentinel-2 and Soil Data" Remote Sensing 14, no. 9: 2256. https://doi.org/10.3390/rs14092256
APA StylePejak, B., Lugonja, P., Antić, A., Panić, M., Pandžić, M., Alexakis, E., Mavrepis, P., Zhou, N., Marko, O., & Crnojević, V. (2022). Soya Yield Prediction on a Within-Field Scale Using Machine Learning Models Trained on Sentinel-2 and Soil Data. Remote Sensing, 14(9), 2256. https://doi.org/10.3390/rs14092256