Electrochemical Detection of E. coli O157:H7 in Water after Electrocatalytic and Ultraviolet Treatments Using a Polyguanine-Labeled Secondary Bead Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culturing E. coli O157:H7 Cells and Plate Counting
2.2. E. coli Inactivation
2.3. Immunomagnetic Bead Separation of E. coli
2.4. Conjugation of Polystyrene Beads with Flourescent Dyes
2.5. Electrochemistry Measurements
2.6. Flow Cytometry
2.7. Scanning Electron Microscopy
3. Results and Discussion
3.1. Pathogen Disinfection
3.2. Indirect Electrochemical Quantification of Inactivated E. coli O157:H7
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nguyen, Y.; Sperandio, V. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front. Cell. Infect. Microbiol. 2012, 2, 90. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Weagant, S.D.; Jinneman, K. Laboratory Methods—BAM: Diarrheagenic Escherichia coli. Available online: https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm070080.htm (accessed on 20 February 2018).
- Okpara, C.G.; Oparaku, N.F.; Ibeto, C.N. An Overview of Water Disinfection in Developing Countries and Potentials of Renewable Energy. J. Environ. Sci. Technol. 2011, 4, 18–30. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA) Web Page. 5.11 Fecal Bacteria. Available online: https://archive.epa.gov/water/archive/web/html/vms511.html (accessed on 26 January 2018).
- Law, J.W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2014, 5, 770. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lin, C.-W.; Wang, J.; Oh, D.H. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, T.; Sulthana, S.; Shelby, T.; Heckert, B.; Jewell, J.; Woody, K.; Karimnia, V.; McAfee, J.; Santra, S. Multiparametric Magneto-fluorescent Nanosensors for the Ultrasensitive Detection of Escherichia coli O157:H7. ACS Infect. Dis. 2016, 2, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Castillo, F.Y.; Loera-Muro, A.; Jacques, M.; Garneau, P.; Avelar-González, F.J.; Harel, J.; Guerrero-Barrera, A.L. Waterborne pathogens: Detection methods and challenges. Pathogens 2015, 4, 307–334. [Google Scholar] [CrossRef] [PubMed]
- Shelby, T.; Sulthana, S.; Mcafee, J.; Banerjee, T.; Santra, S. Foodborne Pathogen Screening Using Magneto-fluorescent Nanosensor: Rapid Detection of E. Coli O157:H7 Video Link. J. Vis. Exp. 2017. [Google Scholar] [CrossRef] [PubMed]
- Alhamlan, F.S.; Al-Qahtani, A.A.; Al-Ahdal, M.N. Recommended advanced techniques for waterborne pathogen detection in developing countries. J. Infect. Dev. Ctries. 2015, 9, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Hou, N.; Jin, M.; Qiu, Z.; Wang, J.; Zhang, B.; Wang, X.; Wang, J.; Zhou, D.; Li, J. A novel enzyme-linked immunosorbent assay for detection of Escherichia coli O157:H7 using immunomagnetic and beacon gold nanoparticles. Gut Pathog. 2014, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Jayamohan, H.; Gale, B.K.; Minson, B.; Lambert, C.J.; Gordon, N.; Sant, H.J. Highly sensitive bacteria quantification using immunomagnetic separation and electrochemical detection of guanine-labeled secondary beads. Sensors 2015, 15, 12034–12052. [Google Scholar] [CrossRef] [PubMed]
- Gordon, N. Ultra-Sensitive Detection of Extremely Low Level Biological Analytes Using Electrochemical Signal Amplification and Biosensor. U.S. Patent 9,624,532, 18 April 2017. [Google Scholar]
- Huber, J.M.; Carlson, K.L.; Conroy-Ben, O.; Misra, M.; Mohanty, S.K. Development of a field enhanced photocatalytic device for biocide of coliform bacteria. J. Environ. Sci. 2016, 44, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Carlson, K.; Elliott, C.; Walker, S.; Misra, M.; Mohanty, S. An Effective, Point-of-Use Water Disinfection Device Using Immobilized Black TiO2 Nanotubes as an Electrocatalyst. J. Electrochem. Soc. 2016, 163, H395–H401. [Google Scholar] [CrossRef]
- Carlson, K.; Tamllos, J.; Timmerman, A.; Misra, M.; Mohanty, S. Development of titanium dioxide nanotube-based arrays for the electrocatalytic degradation and electrochemical detection of emerging pharmaceuticals in water. In WIT Transactions on Ecology and the Environment; WIT Press: Southampton, UK, 2016; Volume 209, pp. 53–63. [Google Scholar]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Chan, K.Y.; Ye, W.W.; Zhang, Y.; Xiao, L.D.; Leung, P.H.M.; Li, Y.; Yang, M. Ultrasensitive detection of E. coli O157:H7 with biofunctional magnetic bead concentration via nanoporous membrane based electrochemical immunosensor. Biosens. Bioelectron. 2013, 41, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, F.J. Ozone Reaction Kinetics for Water and Wastewater Systems; Lewis: Boca Raton, FL, USA, 2004; ISBN 1566706297. [Google Scholar]
- Nah, Y.-C.; Paramasivam, I.; Schmuki, P. Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications. ChemPhysChem 2010, 11, 2698–2713. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Duan, W.; Wang, Q.; Li, X. The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light. Colloids Surf. B Biointerfaces 2010, 78, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.P.; Kumar, A.; Tyagi, M.B.; Sinha, R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 2010, 592980. [Google Scholar] [CrossRef] [PubMed]
Sample | Averaged Peak Signal (µA) (n = 3, ±SEM) * | Average Plate Counts (cfu/mL) (n = 3) |
---|---|---|
Original/No Treatment | 4.37 (±0.18) | 2.03 × 107 (±7.62 × 105) |
15 s | 3.86 (±0.07) | 0 |
5 min | 3.75 (±0.09) | 0 |
15 min | 3.78 (±0.16) | 0 |
Blank Sample | 3.73 (±0.18) | 0 |
Sample | Averaged Peak Signal (µA) (n = 3, ±SEM) * | Average Plate Counts (cfu/mL) (n = 3) |
---|---|---|
Original/No Treatment | 4.02 (±0.36) | 50 × 106 ** |
15 s | 3.32 (±0.11) | 22 (±7.36) |
5 min | 3.21 (±0.27) | 0 |
15 min | 3.18 (±0.08) | 0 |
Blank Sample | 2.99 (±0.21) | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beeman, M.G.; Nze, U.C.; Sant, H.J.; Malik, H.; Mohanty, S.; Gale, B.K.; Carlson, K. Electrochemical Detection of E. coli O157:H7 in Water after Electrocatalytic and Ultraviolet Treatments Using a Polyguanine-Labeled Secondary Bead Sensor. Sensors 2018, 18, 1497. https://doi.org/10.3390/s18051497
Beeman MG, Nze UC, Sant HJ, Malik H, Mohanty S, Gale BK, Carlson K. Electrochemical Detection of E. coli O157:H7 in Water after Electrocatalytic and Ultraviolet Treatments Using a Polyguanine-Labeled Secondary Bead Sensor. Sensors. 2018; 18(5):1497. https://doi.org/10.3390/s18051497
Chicago/Turabian StyleBeeman, Michael G., Ugochukwu C. Nze, Himanshu J. Sant, Hammad Malik, Swomitra Mohanty, Bruce K Gale, and Krista Carlson. 2018. "Electrochemical Detection of E. coli O157:H7 in Water after Electrocatalytic and Ultraviolet Treatments Using a Polyguanine-Labeled Secondary Bead Sensor" Sensors 18, no. 5: 1497. https://doi.org/10.3390/s18051497
APA StyleBeeman, M. G., Nze, U. C., Sant, H. J., Malik, H., Mohanty, S., Gale, B. K., & Carlson, K. (2018). Electrochemical Detection of E. coli O157:H7 in Water after Electrocatalytic and Ultraviolet Treatments Using a Polyguanine-Labeled Secondary Bead Sensor. Sensors, 18(5), 1497. https://doi.org/10.3390/s18051497