Validation of Wireless Sensors for Psychophysiological Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the System
2.1.1. Hardware
2.1.2. Software
2.1.3. Participants
2.1.4. Psychophysiological Recordings
2.1.5. Experimental Apparatus
2.2. Data Analysis
2.2.1. Comparison of the EDA signal
2.2.2. Comparison of the PPG Signal
3. Results
3.1. Electrodermal Activity Raw, Tonic, and Phasic Components
3.2. Skin Conductance Responses
3.3. Photoplethysmography
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical Statements
References
- Cacioppo, J.T.; Tassinary, L.G.; Berntson, G.G. Psychophysiological science: Interdisciplinary approaches to classic questions about the mind. Handb. Psychophysiol. 2007, 3, 1–16. [Google Scholar]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Bradley, M.M.; Lang, P.J. Affective reactions to acoustic stimuli. Psychophysiology 2000, 37, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Segerstrom, S.C.; Nes, L.S. Heart rate variability reflects self-regulatory strength, effort, and fatigue. Psychol. Sci. 2007, 18, 275–281. [Google Scholar] [CrossRef]
- Appelhans, B.M.; Luecken, L.J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 2006, 10, 229–240. [Google Scholar] [CrossRef]
- Sarchiapone, M.; Gramaglia, C.; Iosue, M.; Carli, V.; Mandelli, L.; Serretti, A.; Marangon, D.; Zeppegno, P. The association between electrodermal activity (EDA), depression and suicidal behaviour: A systematic review and narrative synthesis. BMC Psychiatry 2018, 18, 22. [Google Scholar] [CrossRef]
- Hinrichs, R.; Michopoulos, V.; Winters, S.; Rothbaum, A.O.; Rothbaum, B.O.; Ressler, K.J.; Jovanovic, T. Mobile assessment of heightened skin conductance in posttraumatic stress disorder. Depress. Anxiety 2017, 34, 502–507. [Google Scholar] [CrossRef]
- Niedtfeld, I.; Defiebre, N.; Regenbogen, C.; Mier, D.; Fenske, S.; Kirsch, P.; Lis, S.; Schmahl, C. Facing the problem: Impaired emotion recognition during multimodal social information processing in borderline personality disorder. J. Personal. Disord. 2017, 31, 273–288. [Google Scholar] [CrossRef]
- Holzman, J.B.; Bridgett, D.J. Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review. Neurosci. Biobehav. Rev. 2017, 74, 233–255. [Google Scholar] [CrossRef]
- Beauchaine, T.P.; Thayer, J.F. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 2015, 98, 338–350. [Google Scholar] [CrossRef]
- Jacobs, R.J.; Lou, J.Q.; Ownby, R.L.; Caballero, J. A systematic review of eHealth interventions to improve health literacy. Health Inform. J. 2016, 22, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Muellmann, S.; Forberger, S.; Moellers, T.; Broering, E.; Zeeb, H.; Pischke, C.R. Effectiveness of eHealth interventions for the promotion of physical activity in older adults: A systematic review. Prev. Med. 2018, 108, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Hedman, E.; Axelsson, E.; Andersson, E.; Lekander, M.; Ljotsson, B. Exposure-based cognitive–behavioural therapy via the internet and as bibliotherapy for somatic symptom disorder and illness anxiety disorder: Randomised controlled trial. Br. J. Psychiatry 2016, 209, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Deady, M.; Choi, I.; Calvo, R.A.; Glozier, N.; Christensen, H.; Harvey, S.B. eHealth interventions for the prevention of depression and anxiety in the general population: A systematic review and meta-analysis. BMC Psychiatry 2017, 17, 310. [Google Scholar] [CrossRef] [PubMed]
- Morland, L.A.; Greene, C.J.; Rosen, C.S.; Kuhn, E.; Hoffman, J.; Sloan, D.M. Telehealth and eHealth interventions for posttraumatic stress disorder. Curr. Opin. Psychol. 2017, 14, 102–108. [Google Scholar] [CrossRef]
- Groscurth, E. Anatomy of sweat glands. Curr. Probl. Dermatol. Basel 2002, 30, 1–9. [Google Scholar]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Benedek, M.; Kaernbach, C. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Giavarina, D. Understanding bland altman analysis. Biochem. Med. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Saga, K. Structure and function of human sweat glands studied with histochemistry and cytochemistry. Prog. Histochem. Cytochem. 2002, 37, 323–386. [Google Scholar] [CrossRef]
- Quintana, D.S. Statistical considerations for reporting and planning heart rate variability case-control studies. Psychophysiology 2017, 54, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Collaboration, O.S. Estimating the reproducibility of psychological science. Science 2015, 349, aac4716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stupple, A.; Singerman, D.; Celi, L.A. The reproducibility crisis in the age of digital medicine. NPJ Digit. Med. 2019, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Siegel, E.H.; Sands, M.K.; Van den Noortgate, W.; Condon, P.; Chang, Y.; Dy, J.; Quigley, K.S.; Barrett, L.F. Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychol. Bull. 2018, 144, 343. [Google Scholar] [CrossRef]
- Moreira, P.S.; Chaves, P.; Dias, N.; Costa, P.; Almeida, P.R. Emotional Processing and the Autonomic Nervous System: A Comprehensive Meta-Analytic Investigation. PsyArXiv 2018. [Google Scholar] [CrossRef]
- Alvares, G.A.; Quintana, D.S.; Hickie, I.B.; Guastella, A.J. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: A systematic review and meta-analysis. J. Psychiatry Neurosci. 2016, 41, 89–104. [Google Scholar] [CrossRef]
- Villarejo, M.V.; Zapirain, B.G.; Zorrilla, A.M. A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee. Sensors 2012, 12, 6075–6101. [Google Scholar] [CrossRef]
- Zangróniz, R.; Martínez-Rodrigo, A.; Pastor, J.; López, M.; Fernández-Caballero, A. Electrodermal activity sensor for classification of calm/distress condition. Sensors 2017, 17, 2324. [Google Scholar] [CrossRef]
- Cipresso, P.; Colombo, D.; Riva, G. Computational psychometrics using psychophysiological measures for the assessment of acute mental stress. Sensors 2019, 19, 781. [Google Scholar] [CrossRef]
- Pereira, V.H.; Campos, I.; Sousa, N. The role of autonomic nervous system in susceptibility and resilience to stress. Curr. Opin. Behav. Sci. 2017, 14, 102–107. [Google Scholar] [CrossRef]
- Nagai, Y. Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette Syndrome. Front. Neurosci. 2015, 9, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, R.E.; Ochsner, K.N. The neuroscience of emotion regulation development: Implications for education. Curr. Opin. Behav. Sci. 2016, 10, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Jester, D.J.; Rozek, E.K.; McKelley, R.A. Heart rate variability biofeedback: Implications for cognitive and psychiatric effects in older adults. Aging Ment. Health 2019, 23, 574–580. [Google Scholar] [CrossRef]
- Schoenberg, P.L.; David, A.S. Biofeedback for psychiatric disorders: A systematic review. Appl. Psychophysiol. Biofeedback 2014, 39, 109–135. [Google Scholar] [CrossRef]
Subject | Raw | Phasic (μS) | Phasic (z-Score) | Tonic (μS) | Tonic (z-Score) |
---|---|---|---|---|---|
1 | 0.157829 | 0.566533 | 0.507982 | 0.204574 | 0.203871 |
2 | 0.777349 | 0.751913 | 0.777177 | 0.851708 | 0.858796 |
3 | 0.501085 | 0.973458 | 0.971107 | 0.404898 | 0.396931 |
4 | 0.743937 | 0.875577 | 0.900557 | 0.464637 | 0.492426 |
5 | 0.689561 | 0.957669 | 0.956994 | 0.594456 | 0.606494 |
6 | 0.983215 | 0.951585 | 0.957592 | 0.990673 | 0.985216 |
7 | 0.959799 | 0.961409 | 0.946377 | 0.979678 | 0.976061 |
8 | 0.893347 | 0.950241 | 0.944622 | 0.897131 | 0.918484 |
9 | 0.75305 | 0.78268 | 0.775502 | 0.755483 | 0.742987 |
10 | 0.936485 | 0.878783 | 0.747058 | 0.968315 | 0.980932 |
11 | 0.823657 | 0.951024 | 0.948961 | 0.928863 | 0.925523 |
12 | 0.946632 | 0.772801 | 0.852358 | 0.956802 | 0.952326 |
13 | 0.832333 | 0.894016 | 0.892842 | 0.872568 | 0.864734 |
14 | 0.80463 | 0.820812 | 0.818961 | 0.808144 | 0.797832 |
15 | 0.943365 | 0.970063 | 0.958886 | 0.801582 | 0.650859 |
16 | 0.984161 | 0.972005 | 0.971048 | 0.973049 | 0.969597 |
17 | 0.83786 | 0.907575 | 0.901858 | 0.801852 | 0.799356 |
18 | 0.852281 | 0.953636 | 0.926891 | 0.715306 | 0.69144 |
19 | 0.742936 | 0.576188 | 0.56903 | 0.86492 | 0.911805 |
20 | 0.927842 | 0.939918 | 0.939204 | 0.981458 | 0.965082 |
Subject | BP | James One | Diff |
---|---|---|---|
1 | 104 | 100.4 | 3.6 |
2 | 65.2 | 64.8 | 0.4 |
3 | 73.2 | 73.2 | 0 |
4 | 80 | 80 | 0 |
5 | 88.4 | 88.8 | 0.4 |
6 | 62.4 | 62 | 0.4 |
7 | 75.6 | 75.2 | 0.4 |
8 | 60.8 | 59.6 | 1.2 |
9 | 86 | 85.6 | 0.4 |
10 | 76.8 | 76.8 | 0 |
11 | 80.8 | 80.4 | 0.4 |
12 | 84 | 83.6 | 0.4 |
13 | 72.8 | 72.8 | 0 |
14 | 66.8 | 66.8 | 0 |
15 | 64.8 | 64.4 | 0.4 |
16 | 86.8 | 86.8 | 0 |
17 | 93.2 | 92.8 | 0.4 |
18 | 78 | 77.6 | 0.4 |
19 | 99.6 | 99.6 | 0 |
20 | 68.4 | 67.6 | 0.8 |
Average | 78.38 | 77.94 | 0.48 |
SD | 12.28248 | 12.05217 | 0.813914 |
r | 0.997839184 |
Metric | r | P |
---|---|---|
Beats per minute (BPM) | 0.998412 | 2.02 × 10−21 |
Breathing rate (BR) | 0.711613 | 9.26 × 10−4 |
High-frequency HRV (HF-HRV) | 0.982407 | 4.37 × 10−13 |
Median absolute deviation of RR intervals (MAD) | 0.951843 | 1.25 × 10−9 |
Inter-beat Interval (IBI) | 0.999173 | 1.10 × 10−23 |
Low-frequency HRV (HF-HRV) | 0.96339 | 1.45 × 10−10 |
Ration between high-frequency and low-frequency HRV (HF/LF-HRV) | 0.822172 | 2.83 × 10−5 |
Proportion of successive differences above 20 ms (pNN20) | 0.95373 | 9.13 × 10−10 |
Proportion of successive differences above 50 ms (pNN50) | 0.95697 | 5.16 × 10−10 |
Root mean square of successive differences (RMSSD) | 0.940546 | 6.51 × 10−9 |
Standard deviation of RR intervals (SDNN) | 0.984705 | 1.44 × 10−13 |
Standard deviation of successive differences (SDSD) | 0.901866 | 3.17 × 10−7 |
Subject | IBI |
---|---|
2 | 0.991393 |
3 | 0.997535 |
4 | 0.585372 |
5 | 0.710497 |
6 | 0.821138 |
7 | 0.95914 |
8 | 0.492672 |
9 | 0.987846 |
10 | 0.986796 |
11 | 0.983388 |
12 | 0.991468 |
13 | 0.673156 |
14 | 0.991269 |
15 | 0.771187 |
16 | 0.993361 |
17 | 0.958586 |
18 | 0.854538 |
19 | 0.982767 |
20 | 0.62377 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva Moreira, P.; Chaves, P.; Dias, R.; Dias, N.; Almeida, P.R. Validation of Wireless Sensors for Psychophysiological Studies. Sensors 2019, 19, 4824. https://doi.org/10.3390/s19224824
Silva Moreira P, Chaves P, Dias R, Dias N, Almeida PR. Validation of Wireless Sensors for Psychophysiological Studies. Sensors. 2019; 19(22):4824. https://doi.org/10.3390/s19224824
Chicago/Turabian StyleSilva Moreira, Pedro, Pedro Chaves, Ruben Dias, Nuno Dias, and Pedro R Almeida. 2019. "Validation of Wireless Sensors for Psychophysiological Studies" Sensors 19, no. 22: 4824. https://doi.org/10.3390/s19224824