Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Neural Recording
2.2. Feature Extraction and Data Preparation
2.3. Transfer Learning and Mini-Batch Based Attention-Gated Reinforcement Learning
2.3.1. Neural Network Structure of TMAGRL
2.3.2. Training Algorithm for the Initial Decoder of TMAGRL
2.3.3. Adaptive weight Updating in TMAGRL for Online Testing
2.4. The Evaluation of Weight Updating Efficiency in TMAGRL Method
2.5. Other Decoder Calibration Schemes
3. Results
3.1. Performance of TMAGRL in Calibration with Historical Data from the Previous Day
3.2. Performance of TMAGRL in Calibration using Historical Data with Higher Time Separation
3.3. Weight Updating Efficiency in TMAGRL Method
3.4. Effect of Batch Size on Performance of TMAGRL
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdulkader, S.N.; Atia, A.; Mostafa, M.S.M. Brain computer interfacing: Applications and challenges. Egypt. Inform. J. 2015, 16, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Bensmaia, S.J.; Miller, L.E. Restoring sensorimotor function through intracortical interfaces: Progress and looming challenges. Nat. Rev. Neurosci. 2014, 15, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, L.R.; Serruya, M.D.; Friehs, G.M.; Mukand, J.A.; Saleh, M.; Caplan, A.H.; Branner, A.; Chen, D.; Penn, R.D.; Donoghue, J.P. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006, 442, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Santhanam, G.; Ryu, S.I.; Byron, M.Y.; Afshar, A.; Shenoy, K.V. A high-performance braincomputer interface. Nature 2006, 442, 195–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meel, V.; Sagi, P.S.; Chance, M.; Whitford, A.S.; Schwartz, A.B. Cortical control of a prosthetic arm for self-feeding. Nature 2008, 453, 1098–1101. [Google Scholar]
- Collinger, J.L.; Wodlinger, B.; Downey, J.E.; Wei, W.; Schwartz, A.B. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 2013, 381, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Tyson, A.; Spencer, K.; Christian, K.; Brian, L.; Ying, S.; Kelsie, P.S.; Kathleen, H.J.S.; Mindy, A.; Christi, H. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 2015, 348, 906–910. [Google Scholar]
- Vansteensel, M.J.; Pels, E.G.M.; Bleichner, M.G.; Branco, M.P.; Denison, T.; Freudenburg, Z.V.; Gosselaar, P.; Leinders, S.; Ottens, T.H.; Den, M.A.V. Fully implanted braincomputer interface in a locked-in patient with als. N. Engl. J. Med. 2016, 375, 2060–2066. [Google Scholar] [CrossRef]
- Hochberg, L.R.; Bacher, D.; Jarosiewicz, B.; Masse, N.Y.; Simeral, J.D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S.S.; Smagt, P. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 2013, 485, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Chethan, P.; Paul, N.; Blabe, C.H.; Sorice, B.L.; Jad, S.; Willett, F.R.; Hochberg, L.R.; Shenoy, K.V.; Henderson, J.M. High performance communication by people with paralysis using an intracortical braincomputer interface. Elife 2017, 6, e18554. [Google Scholar]
- Beata, J.; Sarma, A.A.; Daniel, B.; Masse, N.Y.; Simeral, J.D.; Brittany, S.; Oakley, E.M.; Christine, B.; Chethan, P.; Vikash, G. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci. Transl. Med. 2015, 7, 313ra179. [Google Scholar]
- Bacher, D.; Jarosiewicz, B.; Masse, N.Y.; Stavisky, S.D.; Simeral, J.D.; Newell, K.; Oakley, E.M.; Cash, S.S.; Friehs, G.; Hochberg, L.R. Neural point-and-click communication by a person with incomplete locked-in syndrome. Neurorehabil. Neural Repair 2015, 29, 462–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwemmer, M.A.; Skomrock, N.D.; Sederberg, P.B.; Ting, J.E.; Sharma, G.; Bockbrader, M.A.; Friedenberg, D.A. Meeting brain-computer interface user performance expectations using a deep neural network decoding framework. Nat. Med. 2018, 24, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Gilja, V.; Nuyujukian, P.; Chestek, C.A.; Cunningham, J.P.; Yu, B.M.; Fan, J.M.; Churchland, M.M.; Kaufman, M.T.; Kao, J.C.; Ryu, S.I. A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 2012, 15, 1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Ma, X.; Chen, L.; Zhou, J.; Wang, C.; Li, W.; He, J. Decoder calibration with ultra small current sample set for intracortical brainmachine interface. J. Neural Eng. 2018, 15, 026019. [Google Scholar] [CrossRef]
- Farshchian, A.; Gallego, J.A.; Cohen, J.P.; Bengio, Y.; Miller, L.E.; Solla, S.A. Adversarial domain adaptation for stable brain–machine interfaces. arXiv 2019, arXiv:1810.00045v2. [Google Scholar]
- Jackson, A.; Hall, T.M. Decoding local field potentials for neural interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1705–1714. [Google Scholar] [CrossRef]
- Perge, J.A.; Homer, M.L.; Malik, W.Q.; Cash, S.; Eskandar, E.; Friehs, G.; Donoghue, J.P.; Hochberg, L.R. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. J. Neural Eng. 2013, 10, 36004. [Google Scholar] [CrossRef] [Green Version]
- Sussillo, D.; Stavisky, S.D.; Kao, J.C.; Ryu, S.I.; Shenoy, K.V. Making brain machine interfaces robust to future neural variability. Nat. Commun. 2016, 7, 13749. [Google Scholar] [CrossRef]
- Paul, N.; Kao, J.C.; Fan, J.M.; Stavisky, S.D.; Ryu, S.I.; Shenoy, K.V. Performance sustaining intracortical neural prostheses. J. Neural Eng. 2014, 11, 66003. [Google Scholar]
- Bishop, W.; Chestek, C.C.; Gilja, V.; Nuyujukian, P.; Foster, J.D.; Ryu, S.I.; Shenoy, K.V.; Yu, B.M. Self-recalibrating classifiers for intracortical brain-computer interfaces. J. Neural Eng. 2014, 11, 26001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; Mcalpine, D.; Zhang, Y. A survey on deep learning based brain computer interface: Recent advances and new frontiers. arXiv 2019, arXiv:1905.04149v4. [Google Scholar]
- Zhang, X.; Yao, L.; Dong, M.; Liu, Z.; Zhang, Y.; Li, Y. Adversarial Representation Learning for Robust Patient-Independent Epileptic Seizure Detection. IEEE J. Biome. Health Inform. 2019, 1909, 10868. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; O’Doherty, J.E.; Lebedev, M.A.; Nicolelis, M.A. Adaptive decoding for brain–machine interfaces through bayesian parameter updates. Neural Comput. 2014, 23, 3162–3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, L.; Eden, U.T.; Mitter, S.K.; Brown, E.N. General purpose filter design for neural prosthetic devices. J. Neurophysiol. 2007, 98, 2456–2475. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Hatsopoulos, N.G. Real-time decoding of nonstationary neural activity in motor cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Huang, J.; Li, W.; Ma, X.; Yang, P.; Dai, J.; He, J. Using high-frequency local field potentials from multicortex to decode reaching and grasping movements in monkey. IEEE T. Cogn. Dev. Syst. 2019, 11, 270–280. [Google Scholar]
- Pohlmeyer, E.A.; Mahmoudi, B.; Geng, S.; Prins, N.W.; Sanchez, J.C.; Cymbalyuk, G. Using reinforcement learning to provide stable brainmachine interface control despite neural input reorganization. PLoS ONE 2014, 9, e87253. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, Y.; Xu, K.; Li, H.; Liao, Y.; Zhang, Q.; Zhang, S.; Zheng, X.; Principe, J.C. Quantized attention-gated kernel reinforcement learning for brainmachine interface decoding. IEEE Trans. Neural. Netw. Learn Syst. 2017, 28, 873–886. [Google Scholar] [CrossRef]
- Zhang, X.; Libedinsky, C.; So, R.; Principe, J.C.; Wang, Y. Clustering neural patterns in kernel reinforcement learning assists fast brain control in brain–machine interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1684–1694. [Google Scholar] [CrossRef]
- Mahmoudi, B.; Sanchez, J.C. A symbiotic brain–machine interface through value-based decision making. PLoS ONE 2011, 6, e14760. [Google Scholar] [CrossRef] [Green Version]
- Bower, G.H. Theories of Learning, 5th ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1981. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Wang, Y.; Wang, F.; Xu, K.; Zhang, Q.; Zhang, S.; Zheng, X. Neural control of a tracking task via attention-gated reinforcement learning for brain–machine interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 23, 1. [Google Scholar] [CrossRef] [PubMed]
- Digiovanna, J.; Mahmoudi, B.; Fortes, J.; Principe, J.C.; Sanchez, J.C. Coadaptive brainmachine interface via reinforcement learning. IEEE Trans. Biomed. Eng. 2009, 56, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.C.; Tarigoppula, A.; Choi, J.S.; Marsh, B.T.; Francis, J.T. Control of a center-out reaching task using a reinforcement learning brain–machine interface. In Proceedings of the 5th International IEEE/EMBS Conference on Neural Engineering (NER 2011), Canun, Mexico, 27 April–1 May 2011; pp. 525–552. [Google Scholar]
- Mahmoudi, B.; Pohlmeyer, E.A.; Prins, N.W.; Geng, S.; Sanchez, J.C. Towards autonomous neuroprosthetic control using hebbian reinforcement learning. J. Neural Eng. 2013, 10, 066005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, S.C.; Doya, K.; Okada, G.; Ueda, K.; Okamoto, Y.; Yamawaki, S. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat. Neurosci. 2004, 7, 887–893. [Google Scholar] [CrossRef]
- Doya, K. Modulators of decision making. Nat. Neurosci. 2008, 11, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Marsh, B.T.; Tarigoppula, V.S.A.; Chen, C.; Francis, J.T. Toward an autonomous brain machine interface: Integrating sensorimotor reward modulation and reinforcement learning. J. Neurosci. 2015, 35, 7374–7387. [Google Scholar] [CrossRef]
- Roelfsema, P.; Ooyen, A.V. Attention-gated reinforcement learning of internal representations for classification. Neural Comput. 2005, 17, 2176–2214. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Jin, H.; Xuan, X.; He, J. A neurobehavioral device to study the neural mechanism in reach to grasp task. In Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA 2012), Chengdu, China, 5–8 August 2012; pp. 2146–2151. [Google Scholar]
- Dai, J.; Zhang, P.; Sun, H.; Qiao, X.; Zhao, Y.; Ma, J.; Li, S.; Zhou, J.; Wang, C. Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain–machine interface. J. Neural Eng. 2019, 16, 36011. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2016, arXiv:1511.05952v4. [Google Scholar]
- Krauledat, M.; Tangermann, M.; Blankertz, B.; Müller, K.-R. Towards Zero Training for Brain-Computer Interfacing. PLoS ONE 2008, 3, e2967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyohyeong, K.; Yunjun, N.; Seungjin, C. Composite Common Spatial Pattern for Subject-to-Subject Transfer. IEEE Signal Process Lett. 2009, 16, 683–686. [Google Scholar] [CrossRef]
- Kang, H.; Choi, S. Bayesian common spatial patterns for multi-subject EEG classification Neural Networks. Neural Netw. 2014, 57, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Lotte, F.; Guan, C. Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms. IEEE Trans. Biomed. Eng. 2011, 58, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Samek, W.; Vidaurre, C.; Müller, K.-R.; Kawanabe, M. Stationary common spatial patterns for brain–computer interfacing. J. Neural Eng. 2012, 9, 026013. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Huang, J.; Wang, Y.; Tao, C.; Lei, C. Reinforcement learning-based shared control for walking-aid robot and its experimental verification. Adv. Robot. 2015, 29, 1463–1481. [Google Scholar] [CrossRef]
- Huang, J.; Yu, X.; Wang, Y.; Xiao, X. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization. Sensors 2016, 16, 1825. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Xu, W.; Mohammed, S.; Shu, Z. Posture estimation and human support using wearable sensors and walking-aid robot. Rob. Autom. Syst. 2015, 73, 24–43. [Google Scholar] [CrossRef]
Monkey M | |||||
Method | Static | NAGREL | Retrained | AGREL | TMAGRL |
Accuracy (%) | 67.8 ± 14.4 | 75.9 ± 13.8 | 85.9 ± 4.2 | 73.9 ± 21.0 | 89.8 ± 4.2 |
Monkey B | |||||
Method | Static | NAGREL | Retrained | AGREL | TMAGRL |
Accuracy (%) | 70.4 ± 17.7 | 79.5 ± 7.7 | 85.1 ± 6.2 | 81.7 ± 8.8 | 91.0 ± 2.3 |
Monkey M | ||||
Confusion Matrix | Predicted Label | |||
left | middle | right | ||
Actual label | left | 189 | 18 | 3 |
middle | 16 | 185 | 9 | |
right | 4 | 14 | 192 | |
Monkey B | ||||
Confusion Matrix | Predicted Label | |||
cube | triangle | sphere | ||
Actual label | cube | 108 | 5 | 7 |
triangle | 4 | 107 | 9 | |
sphere | 5 | 3 | 112 |
Monkey M | |||||
Method | Static | NAGREL | Retrained | AGREL | TMAGRL |
Accuracy (%) | 45.1 ± 14.5 | 60.1 ± 6.7 | 84.2 ± 1.7 | 60.5 ± 23.4 | 86.5 ± 3.2 |
Monkey B | |||||
Method | Static | NAGREL | Retrained | AGREL | TMAGRL |
Accuracy (%) | 42.5 ± 10.6 | 61.1 ± 11.4 | 77.1 ± 0.8 | 76.0 ± 7.8 | 89.3 ± 1.3 |
Monkey M | |||||||||||
Dataset Name | S1D2 | S1D3 | S1D4 | S2D2 | S2D3 | S2D4 | S2D5 | S3D2 | S3D3 | S3D4 | S3D5 |
AGREL (ms) | 126.5 | 311.9 | 246.6 | 26.7 | 142.6 | 124.3 | 387.1 | 839.0 | 752.2 | 536.3 | 804.1 |
TMAGRL (ms) | 2.8 | 2.3 | 6.1 | 1.0 | 1.1 | 1.8 | 3.4 | 10.2 | 12.0 | 9.9 | 6.1 |
Monkey B | |||||||||||
Dataset Name | S1D2 | S1D3 | S1D4 | S2D2 | S2D3 | S2D4 | S3D2 | S3D3 | S3D4 | ||
AGREL (ms) | 119.2 | 213.5 | 298.4 | 210.9 | 198.7 | 453.5 | 246.5 | 647.7 | 296.5 | ||
TMAGRL (ms) | 1.0 | 5.3 | 2.9 | 0.2 | 0.7 | 9.1 | 1.7 | 5.6 | 8.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Chao, L.; Chen, Y.; Ma, X.; Wang, W.; He, J.; Huang, J.; Li, Q. Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface. Sensors 2020, 20, 5528. https://doi.org/10.3390/s20195528
Zhang P, Chao L, Chen Y, Ma X, Wang W, He J, Huang J, Li Q. Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface. Sensors. 2020; 20(19):5528. https://doi.org/10.3390/s20195528
Chicago/Turabian StyleZhang, Peng, Lianying Chao, Yuting Chen, Xuan Ma, Weihua Wang, Jiping He, Jian Huang, and Qiang Li. 2020. "Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface" Sensors 20, no. 19: 5528. https://doi.org/10.3390/s20195528
APA StyleZhang, P., Chao, L., Chen, Y., Ma, X., Wang, W., He, J., Huang, J., & Li, Q. (2020). Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface. Sensors, 20(19), 5528. https://doi.org/10.3390/s20195528