Temperature Prediction Based on Bidirectional Long Short-Term Memory and Convolutional Neural Network Combining Observed and Numerical Forecast Data
Abstract
:1. Introduction
2. Related Work
3. Proposed Temperature Prediction Model Combining Observed and Numerical Forecast Data
3.1. Data Sets
3.1.1. Observed Data
3.1.2. Numerical Forecast Data
3.2. Feature Representation
3.2.1. BLSTM for Observed Data Representation
3.2.2. CNN-BLSTM for Numerical Forecast Data Representation
3.3. Feature Representation
4. Experiments and Discussion
4.1. Evaluation Metric
4.2. Performance Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health (accessed on 28 August 2019).
- Salman, A.G.; Kanigoro, B.; Heryadi, Y. Weather forecasting using deep learning techniques. In Proceedings of the International Conference on Advanced Computer Science and Information Systems, Depok, Indonesia, 10–11 October 2015; pp. 281–285. [Google Scholar]
- Zhou, Y.; Chang, F.-J.; Chang, L.-C.; Kao, I.-F.; Wang, Y.-S. Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 2019, 209, 134–145. [Google Scholar] [CrossRef]
- Ghaderi, A.; Sanandaji, B.M.; Ghaderi, F. Deep forecast: Deep learning-based spatio-temporal forecasting. In Proceedings of the International Conference on Machine Learning, Time Series Workshop, Sydney, NSW, Australia, 6–11 August 2017; pp. 264–271. [Google Scholar]
- Bedi, J.; Toshniwal, D. Deep learning framework to forecast electricity demand. Appl. Energy 2019, 238, 1312–1326. [Google Scholar] [CrossRef]
- Cao, Q.; Ewing, B.T.; Thompson, M.A. Forecasting wind speed with recurrent neural networks. Eur. J. Oper. Res. 2012, 221, 148–154. [Google Scholar] [CrossRef]
- Park, I.; Kim, H.S.; Lee, J.; Kim, J.H.; Song, C.H.; Kim, H.K. Temperature Prediction using the missing data refinement model based on a long short-term memory neural network. Atmosphere 2019, 10, 718. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Shin, M.; Im, J.; Song, C.-K.; Choi, M.; Kim, J.; Lee, S.; Park, R.; Kim, J.; Lee, D.-W.; et al. Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea. Atmos. Chem. Phys. 2019, 19, 1097–1113. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.; Yoo, C.; Im, J.; Cha, D.H. Comparative assessment of various machine learning-based bias correction methods for numerical weather prediction model forecasts of extreme air temperatures in urban areas. Earth Space Sci. 2020, 7, e2019EA000740. [Google Scholar] [CrossRef] [Green Version]
- Qadeer, K.; Rehman, W.U.; Sheri, A.M.; Park, I.; Kim, H.K.; Jeon, M. A long short-term memory (LSTM) network for hourly estimation of PM2.5 concentration in two cities of South Korea. Appl. Sci. 2020, 10, 3984. [Google Scholar] [CrossRef]
- Korean Meteorological Agency. Weather Forecast. Available online: https://web.kma.go.kr/eng/biz/forecast_01.jsp (accessed on 22 December 2020).
- Korea Meteorological Office of Weather. Synoptic Weather Observation Data. Available online: https://web.kma.go.kr/eng/biz/forecast_02.jsp (accessed on 22 December 2020).
- Sekuła, P.; Bokwa, A.; Bochenek, B.; Zimnoch, M. Prediction of air temperature in the Polish Western Carpathian Mountains with the ALADIN-HIRLAM Numerical weather prediction system. Atmosphere 2019, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Cramer, S.; Kampouridis, M.; Freitas, A.A.; Alexandridis, A.K. An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives. Expert Syst. Appl. 2017, 85, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Booz, J.; Yu, W.; Xu, G.; Griffith, D.; Golmie, N. A Deep learning-based weather forecast system for data volume and recency analysis. In Proceedings of the 2019 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 18–19 February 2019; IEEE: New York, NY, USA, 2019; pp. 697–701. [Google Scholar]
- Kim, H.S.; Park, I.; Song, C.H.; Lee, K.; Yun, J.W.; Kim, H.K.; Jeon, M.; Lee, J.; Han, K.M. Development of a daily PM10 and PM2.5 prediction system using a deep long short-term memory neural network model. Atmos. Chem. Phys. 2019, 19, 12935–12951. [Google Scholar] [CrossRef] [Green Version]
- Sobayo, R.; Wu, H.-H.; Ray, R.; Qian, L. Integration of convolutional neural network and thermal images into soil moisture estimation. In Proceedings of the IEEE 2018 1st International Conference on Data Intelligence and Security (ICDIS), South Padre Island, TX, USA, 8–10 April 2018; IEEE: New York, NY, USA, 2018; pp. 207–210. [Google Scholar]
- Yao, Y.; Huang, Z. Bi-directional lstm recurrent neural network for Chinese word segmentation. In Proceedings of the International Conference on Neural Information Processing (ICONIP), Kyoto, Japan, 16–21 October 2016; pp. 345–353. [Google Scholar]
- Althelaya, K.A.; El-Alfy, E.-S.M.; Mohammed, S. Evaluation of bidirectional LSTM for short-and long-term stock market prediction. In Proceedings of the International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 3–5 April 2016; pp. 151–156. [Google Scholar]
- Ma, X.; Zhang, J.; Du, B.; Ding, C.; Sun, L. Parallel architecture of convolutional bi-directional lstm neural networks for network-wide metro ridership prediction. IEEE Trans. Intel. Transp. Syst. 2019, 20, 2278–2288. [Google Scholar] [CrossRef]
- Automatic Weather System. Surface Observations. Available online: https://web.kma.go.kr/eng/biz/observation_02.jsp (accessed on 3 October 2020).
- Luong, T.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing; Marquez, L., Burch-Callison, C., Su, J., Eds.; Association for Computational Linguistics: Lisbon, Portugal, 2015. [Google Scholar]
- Korea Meteorological Administration. Joint WMO Technical Progress Report on the Global Data Processing and Forecasting System and Numerical Weather Prediction Research Activities for 2016. Available online: https://www.wmo.int/pages////prog/www/DPFS/documents/Korea_2016.pdf (accessed on 22 December 2020).
- Patro, S.G.K.; Sahu, K.K. Normalization: A Preprocessing Stage. arXiv 2015, arXiv:1503.06462. [Google Scholar] [CrossRef]
- Ogasawara, E.; Martinez, L.C.; de Oliveira, D.; Zimbrao, G.; Pappa, G.L.; Mattoso, M. Adaptive normalization: A novel data normalization approach for non-stationary time series. In Proceedings of the International Joint Conference on Neural Network (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
- Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. In Proceedings of the 21st International Conference on Asian Language Processing, Beijing, China, 26–31 July 2015. [Google Scholar]
- Keras Blog. Building Autoencoders in Keras. Available online: https://blog.keras.io/building-autoencoders-in-keras.html (accessed on 22 December 2020).
- Mei, S.; Ji, J.; Bi, Q.; Hou, J.; Du, Q.; Li, W. Integrating spectral and spatial information into deep convolutional Neural Networks for hyperspectral classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5067–5070. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 March 2010; pp. 249–256. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference Learn. Represent. (ICLR), San Diego, CA, USA, 5–8 May 2015. [Google Scholar]
- Laine, S.; Aila, T. Temporal ensembling for semi-supervised learning. arXiv 2017, arXiv:1610.02242. [Google Scholar]
- Zaheer, M.; Reddi, S.; Sachan, D.; Kale, S.; Kumar, S. Adaptive methods for nonconvex optimization. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 2–8 December 2018; pp. 9793–9803. [Google Scholar]
- Li, M.; Soltanolkotabi, M.; Oymak, S. Gradient descent with early stopping is provably robust to label noise for overparameterized neural networks. arXiv 2019, arXiv:1903.11680. [Google Scholar]
- Luo, C.; Tan, C.; Zheng, Y. Long-term prediction of time series based on stepwise linear division algorithm and time-variant zonary fuzzy information granules. Int. J. Approx. Reason. 2019, 108, 38–61. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
Model | Horizontal Resolution (km) | Number of Vertical Layers (Top Height) | Forecast Period (H) | Forecast Cycle (H) | Horizontal Grid (East to West, North to South Direction) |
---|---|---|---|---|---|
GDAPS | 25 | 70 (80 km) | 87 288 | 3 6 | 1024 × 769 (25 km from 0° E, 0° S) |
RDAPS | 12 | 70 (80 km) | 87 | 3 | 491 × 419 (12 km from 101.577° E, 12.217° S) |
LDAPS | 1.5 | 70 (40 km) | 36 | 1 | 602 × 781 (1.5 km from 121.834° E, 32.257° N) |
Model | Time (H) | Evaluation Metric | ||||||
---|---|---|---|---|---|---|---|---|
IOA | R | RMSE | MAE (°C) | MBE (°C) | MNGE (%) | MNB (%) | ||
LSTM-based model using observed data | 6 | 0.98 | 0.97 | 2.40 | 1.76 | 0.60 | 0.61 | 0.21 |
12 | 0.98 | 0.96 | 2.81 | 2.08 | −0.15 | 0.73 | −0.04 | |
24 | 0.97 | 0.94 | 3.24 | 2.43 | 0.14 | 0.85 | 0.06 | |
72 | 0.96 | 0.92 | 3.88 | 2.94 | −0.42 | 1.02 | −0.14 | |
168 | 0.95 | 0.91 | 4.24 | 3.25 | −0.37 | 1.14 | −0.15 | |
336 | 0.94 | 0.89 | 4.48 | 3.49 | −0.53 | 1.22 | −0.17 | |
BLSTM-based model using observed data | 6 | 0.99 | 0.98 | 2.38 | 1.75 | 0.61 | 0.61 | 0.22 |
12 | 0.98 | 0.97 | 2.70 | 1.96 | 0.32 | 0.70 | 0.11 | |
24 | 0.98 | 0.96 | 3.05 | 2.28 | 0.45 | 0.81 | 0.17 | |
72 | 0.96 | 0.93 | 3.83 | 2.94 | −0.60 | 1.02 | −0.20 | |
168 | 0.96 | 0.92 | 4.08 | 3.14 | −0.68 | 1.11 | −0.23 | |
336 | 0.95 | 0.91 | 4.42 | 3.40 | −0.92 | 1.19 | −0.31 | |
CNN-BLSTM-based model using RDAPS image data | 6 | 0.99 | 0.98 | 2.17 | 1.68 | −0.02 | 0.57 | 0.00 |
12 | 0.99 | 0.98 | 2.23 | 1.71 | −0.09 | 0.60 | −0.03 | |
24 | 0.99 | 0.97 | 2.47 | 1.83 | 0.04 | 0.65 | 0.02 | |
72 | 0.97 | 0.95 | 3.44 | 2.49 | 0.56 | 0.91 | 0.20 | |
168 | 0.97 | 0.93 | 3.72 | 2.86 | −0.43 | 1.02 | −0.14 | |
336 | 0.96 | 0.92 | 3.98 | 3.09 | −0.40 | 1.09 | −0.13 |
Model | Time (H) | Evaluation Metric | ||||||
---|---|---|---|---|---|---|---|---|
IOA | R | RMSE | MAE (°C) | MBE (°C) | MNGE (%) | MNB (%) | ||
BLSTM-based model combining observed and RDAPS image data in the 1D domain | 6 | 0.99 | 0.98 | 2.11 | 1.59 | 0.03 | 0.56 | 0.02 |
12 | 0.99 | 0.98 | 2.21 | 1.68 | 0.84 | 0.59 | 0.30 | |
24 | 0.99 | 0.98 | 2.35 | 1.77 | 0.52 | 0.62 | 0.19 | |
72 | 0.97 | 0.95 | 3.31 | 2.53 | −0.67 | 0.89 | −0.23 | |
168 | 0.96 | 0.93 | 3.78 | 2.95 | 0.34 | 1.04 | 0.13 | |
336 | 0.94 | 0.89 | 4.68 | 3.75 | 0.49 | 1.32 | 0.19 | |
CNN-based model combining observed and RDAPS image data in the 2D domain | 6 | 0.97 | 0.95 | 3.13 | 2.45 | −0.24 | 0.85 | −0.07 |
12 | 0.97 | 0.96 | 3.05 | 2.41 | 1.54 | 0.84 | 0.54 | |
24 | 0.97 | 0.95 | 3.15 | 2.45 | 0.62 | 0.86 | 0.22 | |
72 | 0.95 | 0.92 | 4.23 | 3.34 | 1.56 | 1.17 | 0.55 | |
168 | 0.95 | 0.91 | 4.19 | 3.27 | 0.53 | 1.15 | 0.20 | |
336 | 0.93 | 0.89 | 4.77 | 3.78 | −1.41 | 1.32 | −0.47 | |
CNN-BLSTM-based model combining observed and RDAPS image data in the 2D domain | 6 | 0.99 | 0.98 | 2.23 | 1.72 | 0.50 | 0.60 | 0.18 |
12 | 0.99 | 0.98 | 2.16 | 1.68 | −0.14 | 0.59 | −0.04 | |
24 | 0.99 | 0.97 | 2.42 | 1.89 | 0.52 | 0.66 | −0.17 | |
72 | 0.97 | 0.95 | 3.31 | 2.49 | 0.21 | 0.88 | 0.08 | |
168 | 0.96 | 0.94 | 3.67 | 2.90 | −0.69 | 1.02 | −0.23 | |
336 | 0.96 | 0.92 | 3.91 | 2.99 | 0.19 | 1.06 | 0.08 |
Model | Time (H) | Evaluation Metric | ||||||
---|---|---|---|---|---|---|---|---|
IOA | R | RMSE | MAE (°C) | MBE (°C) | MNGE (%) | MNB (%) | ||
Proposed model without attention mechanism | 6 | 0.99 | 0.98 | 1.93 | 1.37 | −0.06 | 0.47 | −0.02 |
12 | 0.99 | 0.98 | 2.12 | 1.55 | 0.20 | 0.54 | 0.07 | |
24 | 0.99 | 0.98 | 2.34 | 1.71 | 0.42 | 0.60 | 0.15 | |
72 | 0.97 | 0.95 | 3.17 | 2.41 | −0.50 | 0.85 | −0.17 | |
168 | 0.97 | 0.93 | 3.71 | 2.87 | 0.21 | 0.99 | 0.08 | |
336 | 0.96 | 0.92 | 3.90 | 3.00 | 0.01 | 1.06 | 0.02 | |
Proposed model with attention mechanism | 6 | 0.99 | 0.98 | 1.90 | 1.34 | 0.02 | 0.47 | 0.01 |
12 | 0.99 | 0.98 | 1.98 | 1.46 | 0.30 | 0.51 | 0.10 | |
24 | 0.99 | 0.98 | 2.27 | 1.66 | 0.31 | 0.58 | 0.12 | |
72 | 0.97 | 0.95 | 3.26 | 2.43 | 0.17 | 0.86 | 0.07 | |
168 | 0.97 | 0.93 | 3.71 | 2.81 | −0.46 | 0.99 | −0.15 | |
336 | 0.96 | 0.93 | 3.83 | 2.96 | 0.14 | 1.05 | 0.06 |
Model | Time (H) | Evaluation Metric | ||||||
---|---|---|---|---|---|---|---|---|
IOA | R | RMSE | MAE (°C) | MBE (°C) | MNGE (%) | MNB (%) | ||
UM(RDAPS) | 6 | 0.98 | 0.97 | 2.38 | 1.75 | 0.60 | 0.61 | 0.21 |
12 | 0.98 | 0.96 | 2.76 | 2.04 | −0.15 | 0.71 | −0.05 | |
24 | 0.97 | 0.95 | 3.01 | 2.28 | 0.11 | 0.80 | 0.04 | |
72 | 0.96 | 0.93 | 3.74 | 2.81 | −0.24 | 0.99 | −0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.; Park, I.; Kim, H.S.; Song, C.H.; Kim, H.K. Temperature Prediction Based on Bidirectional Long Short-Term Memory and Convolutional Neural Network Combining Observed and Numerical Forecast Data. Sensors 2021, 21, 941. https://doi.org/10.3390/s21030941
Jeong S, Park I, Kim HS, Song CH, Kim HK. Temperature Prediction Based on Bidirectional Long Short-Term Memory and Convolutional Neural Network Combining Observed and Numerical Forecast Data. Sensors. 2021; 21(3):941. https://doi.org/10.3390/s21030941
Chicago/Turabian StyleJeong, Seongyoep, Inyoung Park, Hyun Soo Kim, Chul Han Song, and Hong Kook Kim. 2021. "Temperature Prediction Based on Bidirectional Long Short-Term Memory and Convolutional Neural Network Combining Observed and Numerical Forecast Data" Sensors 21, no. 3: 941. https://doi.org/10.3390/s21030941