UAV-Driven Structural Crack Detection and Location Determination Using Convolutional Neural Networks
Abstract
:1. Introduction
2. System Architecture
2.1. Feature-Based Image Processing
2.2. Crack Detection Using CNNs
2.2.1. VGG16 Model
2.2.2. Data Set
2.2.3. Training
2.2.4. Inspection
2.2.5. Retraining and Reinspection for Each Method
2.3. Location Determination
3. Experiment Results
3.1. Experiment Conditions and Preparations
3.2. Feature-Based Image Processing
3.3. Crack Detection and Location Determination
3.3.1. Initial Model Training
3.3.2. Method 1
3.3.3. Method 2
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- ASCE. 2017 Infrastructure Report Card; ASCE: Reston, VA, USA, 2017. [Google Scholar]
- Yang, L.; Li, B.; Li, W.; Zhaoming, L.; Yang, G.; Xiao, J. Deep Concrete Inspection Using Unmanned Aerial Vehicle Towards CSSC Database. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; p. 9. [Google Scholar]
- La, H.M.; Gucunski, N.; Dana, K.; Kee, S.H. Development of an Autonomous Bridge Deck Inspection Robotic system. J. Field Robot. 2017, 34, 1489–1504. [Google Scholar] [CrossRef] [Green Version]
- Torok, M.M.; Golparvar-Fard, M.; Kochersberger, K.B. Image-Based Automated 3D Crack Detection for Post-Disaster Building Assessment. J. Comput. Civ. Eng. 2013, 28, A4014004. [Google Scholar] [CrossRef]
- Jahanshahi, M.R.; Masri, S.F. A New Methodology for Non-Contact Accurate Crack width Measurement Through Photogrammetry for Automated Structural Safety Evaluation. Smart Mater. Struct. 2013, 22, 035019. [Google Scholar] [CrossRef]
- Yeum, C.M.; Dyke, S.J. Vision-Based Automated Crack Detection for Bridge Inspection. Comput. Aided Civ. Infrastruct. Eng. 2015, 30, 759–770. [Google Scholar] [CrossRef]
- Halfawy, M.R.; Hengmeechai, J. Integrated Vision-Based System for Automated Defect Detection in Sewer Closed Circuit Television Inspection Videos. J. Comput. Civ. Eng. 2015, 29. [Google Scholar] [CrossRef]
- Fan, Z.; Wu, Y.; Lu, J.; Li, W. Automatic Pavement Crack Detection Based on Structured Prediction with the Convolutional Neural Network. arXiv 2018, arXiv:1802.02208. [Google Scholar]
- Bhowmick, S.; Nagarajaiah, S.; Veeraraghavan, A. Vision and Deep Learning-Based Algorithms to Detect and Quantify Cracks on Concrete Surfaces from UAV Videos. Sensors 2020, 20, 6299. [Google Scholar] [CrossRef]
- Qiao, W.; Ma, B.; Liu, Q.; Wu, X.; Li, G. Computer Vision-Based Bridge Damage Detection Using Deep Convolutional Networks with Expectation Maximum Attention Module. Sensors 2021, 21, 824. [Google Scholar] [CrossRef]
- Ciresan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. Flexible, High Performance Convolutional Neural Networks for Image Classification. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011; pp. 1237–1242. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification With Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simard, P.; Steinkraus, D.; Platt, J. Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis. In Proceedings of the Seventh International Conference on Document Analysis and Recognition, Edinburgh, Scotland, UK, 3–6 August 2003; IEEE: Edinburgh, UK, 2003; Volume 1, pp. 958–963. [Google Scholar]
- Steinkraus, D.; Buck, I.; Simard, P. Using GPUs for Machine Learning Algorithms. In Proceedings of the Eighth International Conference on Document Analysis and Recognition (ICDAR’05), Seoul, Korea, 31 August–1 September 2005; IEEE: Seoul, Korea, 2005; Volume 2, pp. 1115–1120. [Google Scholar]
- Soukup, D.; Huber-Mörk, R. Convolutional Neural Networks for Steel Surface Defect Detection from Photometric Stereo Images. In Advances in Visual Computing; Springer International Publishing: Cham, Switzerland, 2014; Volume 8887, pp. 668–677. [Google Scholar]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Daniel Zhang, Y.; Zhu, Y.J. Road Crack Detection Using Deep Convolutional Neural Network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Phoenix, AZ, USA, 2016; pp. 3708–3712. [Google Scholar]
- Wang, Z.; Yang, J.; Jiang, H.; Fan, X. CNN Training with Twenty Samples for Crack Detection via Data Augmentation. Sensors 2020, 20, 4849. [Google Scholar] [CrossRef]
- Wei, X.; Yang, Z.; Liu, Y.; Wei, D.; Jia, L.; Li, Y. Railway Track Fastener Defect Detection Based on Image Processing and Deep Learning Techniques: A Comparative Study. Eng. Appl. Artif. Intell. 2019, 80, 66–81. [Google Scholar] [CrossRef]
- Yang, Q.; Shi, W.; Chen, J.; Lin, W. Deep convolution neural network-based transfer learning method for civil infrastructure crack detection. Autom. Constr. 2020, 116, 103199. [Google Scholar] [CrossRef]
- Qu, Z.; Mei, J.; Liu, L.; Zhou, D. Crack Detection of Concrete Pavement With Cross-Entropy Loss Function and Improved VGG16 Network Model. IEEE Access 2020, 8, 54564–54573. [Google Scholar] [CrossRef]
- Omiotek, Z.; Kotyra, A. Flame Image Processing and Classification Using a Pre-Trained VGG16 Model in Combustion Diagnosis. Sensors 2021, 21, 500. [Google Scholar] [CrossRef]
- Krishnaswamy Rangarajan, A.; Purushothaman, R. Disease Classification in Eggplant Using Pre-trained VGG16 and MSVM. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Hao, W. Garbage Recognition and Classification System Based on Convolutional Neural Network VGG16. In Proceedings of the 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Shenzhen, China, 24–26 April 2020; pp. 252–255. [Google Scholar] [CrossRef]
- Belaid, O.N.; Loudini, M. Classification of Brain Tumor by Combination of Pre-Trained VGG16 CNN. J. Inf. Technol. Manag. 2020, 12, 13–25. [Google Scholar] [CrossRef]
- Metni, N.; Hamel, T. A UAV for Bridge Inspection: Visual Servoing Control Law with Orientation Limits. Autom. Constr. 2007, 17, 3–10. [Google Scholar] [CrossRef]
- Rau, J.Y.; Hsiao, K.W.; Jhan, J.P.; Wang, S.H.; Fang, W.C.; Wang, J.L. Bridge Crack Detection Using Multi-Rotary UAV and Object-Base Image Analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Kim, S.B.; Park, J.C.; Nam, J.W. Development of Crack Detection System with Unmanned Aerial Vehicles and Digital Image Processing. In Proceedings of the 2015 World Congress on Advances in Structure Engineering and Mechanics (ASEM15), Incheon, Korea, 25–29 August 2015; Techno-Press: Incheon, Korea, 2015. [Google Scholar]
- Phung, M.D.; Hoang, V.T.; Dinh, T.H.; Ha, Q. Automatic Crack Detection in Built Infrastructure Using Unmanned Aerial Vehicles. In Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC), Taipei, Taiwan, 28 June–1 July 2017; pp. 823–829. [Google Scholar]
- Gopalakrishnan, K.; Gholami, H.; Vidyadharan, A.; Choudhary, A.; Agrawal, A. Crack Damage Detection in Unmanned Aerial Vehicle Images of Civil Infrastructure Using Pre-trained Deep Learning Model. Int. J. Traffic Transp. Eng. 2018, 8, 1–14. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Ha, Y.; Kang, H. Evaluation of Feature Based Image Stitching Algorithm using OpenCV. In Proceedings of the 2017 10th International Conference on Human System Interactions (HSI), Ulsan, Korea, 17–19 July 2017; pp. 224–229. [Google Scholar]
- Arya, S. A Review on Image Stitching and its Different Methods. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2015, 5, 299–303. [Google Scholar]
- Torr, P.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Maguire, M.; Dorafshan, S.; Thomas, R.J. SDNET2018: A Concrete Crack Image Dataset for Machine Learning Applications. 2018. Available online: https://digitalcommons.usu.edu/all_datasets/48 (accessed on 1 August 2019).
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Sun, Y.; Wang, J. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning. Comput. Intell. Neurosci. 2017, 2017, 2917536. [Google Scholar] [CrossRef] [Green Version]
- Brahimi, M.; Arsenovic, M.; Laraba, S.; Sladojevic, S.; Kamel, B.; Moussaoui, A. Deep Learning for Plant Diseases: Detection and Saliency Map Visualisation; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Bouguet, J.Y. Camera Calibration Toolbox for Matlab. 2015. Available online: http://www.vision.caltech.edu/bouguetj/calib_doc/ (accessed on 9 April 2021).
- Liu, Y.F.; Cho, S.; Spencer, B.F.; Fan, J.S. Concrete Crack Assessment Using Digital Image Processing and 3D Scene Reconstruction. J. Comput. Civ. Eng. 2014, 30, 1–8. [Google Scholar] [CrossRef]
ID | Classification | Prediction (%) | Pixel | Location (m) | ||
---|---|---|---|---|---|---|
A21 | crack | 92.75 | 4592 | 112 | 0.321 | −1.128 |
B18 | crack | 98.13 | 3920 | 336 | 0.026 | −1.030 |
C22 | crack | 93.48 | 4816 | 560 | 0.419 | −0.933 |
D17 | crack | 99.99 | 3696 | 784 | −0.072 | −0.835 |
D18 | crack | 99.96 | 3920 | 784 | 0.026 | −0.835 |
D19 | crack | 99.99 | 4144 | 784 | 0.125 | −0.835 |
D20 | crack | 99.99 | 4368 | 784 | 0.223 | −0.835 |
E17 | crack | 99.62 | 3696 | 1008 | −0.072 | −0.737 |
E18 | crack | 99.99 | 3920 | 1008 | 0.026 | −0.737 |
F17 | crack | 99.94 | 3696 | 1232 | −0.072 | −0.639 |
F18 | crack | 99.99 | 3920 | 1232 | 0.026 | −0.639 |
F18 | crack | 99.99 | 3920 | 1456 | 0.026 | −0.542 |
H23 | crack | 97.28 | 5040 | 1680 | 0.517 | −0.444 |
H24 | crack | 99.91 | 5264 | 1680 | 0.616 | −0.444 |
N11 | crack | 96.34 | 2352 | 3024 | −0.661 | 0.143 |
N18 | crack | 96.86 | 3920 | 3024 | 0.026 | 0.143 |
O14 | crack | 94.29 | 3024 | 3248 | −0.367 | 0.240 |
P14 | crack | 90.21 | 3024 | 3472 | −0.367 | 0.338 |
Q13 | crack | 99.90 | 2800 | 3696 | −0.465 | 0.436 |
R13 | crack | 99.99 | 2800 | 3920 | −0.465 | 0.534 |
S13 | crack | 90.96 | 2800 | 4144 | −0.465 | 0.631 |
A18 | uncertain | 77.65 | 3920 | 112 | 0.026 | −1.128 |
A19 | uncertain | 37.61 | 4144 | 112 | 0.125 | −1.128 |
F23 | uncertain | 17.71 | 5040 | 1232 | 0.517 | −0.639 |
K22 | uncertain | 20.31 | 4816 | 2352 | 0.419 | −0.151 |
N12 | uncertain | 25.37 | 2576 | 3024 | −0.563 | 0.143 |
N17 | uncertain | 13.37 | 3696 | 3024 | −0.072 | 0.143 |
N21 | uncertain | 65.04 | 4592 | 3024 | 0.321 | 0.143 |
ID | Classification | Prediction (%) | Pixel | Location (m) | ||
---|---|---|---|---|---|---|
A8 | crack | 99.98 | 3656.87 | 209.85 | −0.089 | −1.085 |
B8 | crack | 99.99 | 3656.87 | 629.55 | −0.089 | −0.902 |
B9 | crack | 99.99 | 4144.46 | 629.55 | 0.125 | −0.902 |
B10 | crack | 99.68 | 4632.04 | 629.55 | 0.339 | −0.902 |
C8 | crack | 99.99 | 3656.87 | 1049.25 | −0.089 | −0.719 |
C9 | crack | 98.92 | 4144.46 | 1049.25 | 0.125 | −0.719 |
D8 | crack | 99.99 | 3656.87 | 1468.95 | −0.089 | −0.536 |
D11 | crack | 99.99 | 5119.63 | 1468.95 | 0.552 | −0.536 |
E8 | crack | 99.82 | 3656.87 | 1888.65 | −0.089 | −0.353 |
F10 | crack | 91.61 | 4632.04 | 2308.35 | 0.339 | −0.170 |
G0 | crack | 92.85 | 5607.21 | 2308.35 | 0.766 | −0.170 |
H5 | crack | 99.83 | 2194.13 | 3147.75 | −0.731 | 0.197 |
H6 | crack | 99.22 | 2681.71 | 3147.75 | −0.517 | 0.197 |
H7 | crack | 99.99 | 3169.29 | 3147.75 | −0.303 | 0.197 |
H8 | crack | 99.99 | 3656.87 | 3147.75 | −0.089 | 0.197 |
H9 | crack | 99.60 | 4144.46 | 3147.75 | 0.125 | 0.197 |
H10 | crack | 94.07 | 4632.04 | 3147.75 | 0.339 | 0.197 |
I6 | crack | 96.44 | 2681.71 | 3567.45 | −0.517 | 0.380 |
J6 | crack | 99.99 | 2681.71 | 3987.15 | −0.517 | 0.563 |
A9-1 | uncertain | 14.81 | 4022.46 | 105.10 | 0.071 | −1.131 |
A10-1 | uncertain | 62.64 | 4510.29 | 105.10 | 0.285 | −1.131 |
F7-4 | uncertain | 13.96 | 3291.29 | 2413.35 | −0.249 | −0.124 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, D.; Bell, W.; Kim, D.; Kim, J. UAV-Driven Structural Crack Detection and Location Determination Using Convolutional Neural Networks. Sensors 2021, 21, 2650. https://doi.org/10.3390/s21082650
Choi D, Bell W, Kim D, Kim J. UAV-Driven Structural Crack Detection and Location Determination Using Convolutional Neural Networks. Sensors. 2021; 21(8):2650. https://doi.org/10.3390/s21082650
Chicago/Turabian StyleChoi, Daegyun, William Bell, Donghoon Kim, and Jichul Kim. 2021. "UAV-Driven Structural Crack Detection and Location Determination Using Convolutional Neural Networks" Sensors 21, no. 8: 2650. https://doi.org/10.3390/s21082650