Enhancing Performance of Reservoir Computing System Based on Coupled MEMS Resonators
Abstract
:1. Introduction
2. Methods
2.1. The Structures of the Reservoir Computing
2.2. The Nonlinear Mapping Node of the RC Structure
2.3. Dynamic Richness Analysis of Three RC Structure
2.3.1. The Linear Richness of Dynamic Richness
2.3.2. The Nonlinear Richness of Dynamic Richness
3. Results and Discussion
3.1. Parity Benchmark Prediction Task
3.2. NARMA Prediction Task
3.3. TI-46 Isolated Word Classification Task
3.4. Human Action Recognition Task
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Feldkamp, L.A.; Prokhorov, D.V.; Eagen, C.F.; Yuan, F. Enhanced multi-stream Kalman filter training for recurrent networks. In Nonlinear Modeling; Springer: Berlin, Germany, 1998; pp. 29–53. [Google Scholar]
- Graves, A.; Mohamed, A.-R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Mo, W.; Gutterman, C.L.; Li, Y.; Zussman, G.; Kilper, D.C. Deep neural network based dynamic resource reallocation of BBU pools in 5G C-RAN ROADM networks. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. Th1B. 4. [Google Scholar]
- Maass, W.; Natschläger, T.; Markram, H.J.N.C. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 2002, 14, 2531–2560. [Google Scholar] [CrossRef] [PubMed]
- Pearlmutter, B.A. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Trans. Neural Netw. 1995, 6, 1212–1228. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, H.; Haas, H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science 2004, 304, 78–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caluwaerts, K.; D’Haene, M.; Verstraeten, D.; Schrauwen, B. Locomotion without a brain: Physical reservoir computing in tensegrity structures. Artif. Life 2013, 19, 35–66. [Google Scholar] [CrossRef]
- Du, C.; Cai, F.; Zidan, M.A.; Ma, W.; Lee, S.H.; Lu, W.D. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Ma, W.; Shin, J.H.; Cai, F.; Du, C.; Lee, S.H.; Lu, W.D. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2019, 2, 480–487. [Google Scholar] [CrossRef]
- Appeltant, L.; Soriano, M.C.; Van der Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I.J. Information processing using a single dynamical node as complex system. Nat. Commun. 2011, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Degrave, J.; Caluwaerts, K.; Dambre, J.; Wyffels, F. Developing an embodied gait on a compliant quadrupedal robot. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 4486–4491. [Google Scholar]
- Riou, M.; Araujo, F.A.; Torrejon, J.; Tsunegi, S.; Khalsa, G.; Querlioz, D.; Bortolotti, P.; Cros, V.; Yakushiji, K.; Fukushima, A. Neuromorphic computing through time-multiplexing with a spin-torque nano-oscillator. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 36.33.31–36.33.34. [Google Scholar]
- Riou, M.; Torrejon, J.; Garitaine, B.; Araujo, F.A.; Bortolotti, P.; Cros, V.; Tsunegi, S.; Yakushiji, K.; Fukushima, A.; Kubota, H.J. Temporal pattern recognition with delayed-feedback spin-torque nano-oscillators. Phys. Rev. Appl. 2019, 12, 024049. [Google Scholar] [CrossRef]
- Araujo, F.A.; Riou, M.; Torrejon, J.; Tsunegi, S.; Querlioz, D.; Yakushiji, K.; Fukushima, A.; Kubota, H.; Yuasa, S.; Stiles, M.D. Role of non-linear data processing on speech recognition task in the framework of reservoir computing. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Larger, L.; Soriano, M.C.; Brunner, D.; Appeltant, L.; Gutiérrez, J.M.; Pesquera, L.; Mirasso, C.R.; Fischer, I.J. Photonic information processing beyond Turing: An optoelectronic implementation of reservoir computing. Opt. Express 2012, 20, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.J. Optoelectronic reservoir computing. Sci. Rep. 2012, 2, 287. [Google Scholar] [CrossRef]
- Antonik, P.; Hermans, M.; Haelterman, M.; Massar, S. Towards adjustable signal generation with photonic reservoir computers. In Proceedings of the International Conference on Artificial Neural Networks, Barcelona, Spain, 6–9 September 2016; pp. 374–381. [Google Scholar]
- Duport, F.; Smerieri, A.; Akrout, A.; Haelterman, M.; Massar, S.J. Fully analogue photonic reservoir computer. Sci. Rep. 2016, 6, 22381. [Google Scholar] [CrossRef] [Green Version]
- Brunner, D.; Soriano, M.C.; Mirasso, C.R.; Fischer, I.J. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Vinckier, Q.; Duport, F.; Smerieri, A.; Vandoorne, K.; Bienstman, P.; Haelterman, M.; Massar, S.J.O. High-performance photonic reservoir computer based on a coherently driven passive cavity. Optica 2015, 2, 438–446. [Google Scholar] [CrossRef]
- Denis-Le Coarer, F.; Sciamanna, M.; Katumba, A.; Freiberger, M.; Dambre, J.; Bienstman, P.; Rontani, D.J. All-optical reservoir computing on a photonic chip using silicon-based ring resonators. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Govia, L.; Ribeill, G.; Rowlands, G.; Krovi, H.; Ohki, T.A. Quantum reservoir computing with a single nonlinear oscillator. Phys. Rev. Res. 2021, 3, 013077. [Google Scholar] [CrossRef]
- Dion, G.; Mejaouri, S.; Sylvestre, J. Reservoir computing with a single delay-coupled non-linear mechanical oscillator. J. Appl. Phys. 2018, 124, 152132. [Google Scholar] [CrossRef] [Green Version]
- Coulombe, J.C.; York, M.C.; Sylvestre, J. Computing with networks of nonlinear mechanical oscillators. PLoS ONE 2017, 12, e0178663. [Google Scholar] [CrossRef] [Green Version]
- H Hasan, M.; Al-Ramini, A.; Abdel-Rahman, E.; Jafari, R.; Alsaleem, F. Colocalized Sensing and Intelligent Computing in Micro-Sensors. Sensors 2020, 20, 6346. [Google Scholar] [CrossRef]
- Barazani, B.; Dion, G.; Morissette, J.-F.; Beaudoin, L.; Sylvestre, J. Microfabricated Neuroaccelerometer: Integrating Sensing and Reservoir Computing in MEMS. J. Microelectromechanical Syst. 2020, 29, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Appeltant, L. Reservoir Computing Based on Delay-Dynamical Systems. Ph.D. Thesis, Vrije Universiteit Brussel/Universitat de les Illes Balears, Ixelles, Belgium, 2012. [Google Scholar]
- Hou, Y.; Xia, G.; Yang, W.; Wang, D.; Jayaprasath, E.; Jiang, Z.; Hu, C.; Wu, Z. Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection. Opt. Express 2018, 26, 10211–10219. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.-S.; Xia, G.-Q.; Jayaprasath, E.; Yue, D.-Z.; Yang, W.-Y.; Wu, Z.-M. Prediction and classification performance of reservoir computing system using mutually delay-coupled semiconductor lasers. Opt. Commun. 2019, 433, 215–220. [Google Scholar] [CrossRef]
- Chen, Y.; Yi, L.; Ke, J.; Yang, Z.; Yang, Y.; Huang, L.; Zhuge, Q.; Hu, W. Reservoir computing system with double optoelectronic feedback loops. Opt. Express 2019, 27, 27431–27440. [Google Scholar] [CrossRef]
- Hou, Y.; Xia, G.; Jayaprasath, E.; Yue, D.; Wu, Z. Parallel information processing using a reservoir computing system based on mutually coupled semiconductor lasers. Appl. Phys. A 2020, 126, 40. [Google Scholar] [CrossRef]
- Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3, 127–149. [Google Scholar] [CrossRef]
- Kovac, A.D.; Koall, M.; Pipa, G.; Toutounji, H. Persistent memory in single node delay-coupled reservoir computing. PLoS ONE 2016, 11, e0165170. [Google Scholar] [CrossRef]
- Soriano, M.C.; Ortín, S.; Keuninckx, L.; Appeltant, L.; Danckaert, J.; Pesquera, L.; Van der Sande, G. Delay-based reservoir computing: Noise effects in a combined analog and digital implementation. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 388–393. [Google Scholar] [CrossRef]
- Thiruvenkatanathan, P.; Yan, J.; Lee, J.-Y.; Seshia, A. Enhancing parametric sensitivity using mode localization in electrically coupled MEMS resonators. In Proceedings of the TRANSDUCERS 2009-2009 International Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, USA, 21–25 June 200; pp. 2350–2353.
- Pourkamali, S.; Ayazi, F.J.S.; Physical, A.A. Electrically coupled MEMS bandpass filters: Part I: With coupling element. Sens. Actuators A Phys. 2005, 122, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, H. Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the" Echo State Network" Approach; GMD-Forschungszentrum Informationstechnik: Bonn, Germany, 2002; Volume 5. [Google Scholar]
- Nakayama, J.; Kanno, K.; Uchida, A. Laser dynamical reservoir computing with consistency: An approach of a chaos mask signal. Opt. Express 2016, 24, 8679–8692. [Google Scholar] [CrossRef]
- Büsing, L.; Schrauwen, B.; Legenstein, R. Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Comput. 2010, 22, 1272–1311. [Google Scholar] [CrossRef]
- Bertschinger, N.; Natschläger, T. Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 2004, 16, 1413–1436. [Google Scholar] [CrossRef]
- Zheng, T.; Yang, W.; Sun, J.; Xiong, X.; Li, Z.; Zou, X. Parameters optimization method for the time-delayed reservoir computing with a nonlinear duffing mechanical oscillator. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Instruments-Developed, Texas. 46-Word Speaker-Dependent Isolated Word Corpus (TI46), NIST Speech Disc, September 1991. Available online: https://catalog.ldc.upenn.edu/LDC93S9 (accessed on 1 March 2021).
- Lyon, R. A computational model of filtering, detection, and compression in the cochlea. In Proceedings of the ICASSP’82. IEEE International Conference on Acoustics, Speech, and Signal Processing, Paris, France, 3–5 May 1982; pp. 1282–1285. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Antonik, P.; Marsal, N.; Brunner, D.; Rontani, D. Human action recognition with a large-scale brain-inspired photonic computer. Nat. Mach. Intell. 2019, 1, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Schuldt, C.; Laptev, I.; Caputo, B. Recognizing human actions: A local SVM approach. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 26 August 2004; pp. 32–36. [Google Scholar]
- Lakkam, S.; Balamurali, B.; Bouffanais, R. Hydrodynamic object identification with artificial neural models. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, T.; Yang, W.; Sun, J.; Xiong, X.; Wang, Z.; Li, Z.; Zou, X. Enhancing Performance of Reservoir Computing System Based on Coupled MEMS Resonators. Sensors 2021, 21, 2961. https://doi.org/10.3390/s21092961
Zheng T, Yang W, Sun J, Xiong X, Wang Z, Li Z, Zou X. Enhancing Performance of Reservoir Computing System Based on Coupled MEMS Resonators. Sensors. 2021; 21(9):2961. https://doi.org/10.3390/s21092961
Chicago/Turabian StyleZheng, Tianyi, Wuhao Yang, Jie Sun, Xingyin Xiong, Zheng Wang, Zhitian Li, and Xudong Zou. 2021. "Enhancing Performance of Reservoir Computing System Based on Coupled MEMS Resonators" Sensors 21, no. 9: 2961. https://doi.org/10.3390/s21092961
APA StyleZheng, T., Yang, W., Sun, J., Xiong, X., Wang, Z., Li, Z., & Zou, X. (2021). Enhancing Performance of Reservoir Computing System Based on Coupled MEMS Resonators. Sensors, 21(9), 2961. https://doi.org/10.3390/s21092961