Towards Detecting Pneumonia Progression in COVID-19 Patients by Monitoring Sleep Disturbance Using Data Streams of Non-Invasive Sensor Networks
Abstract
:1. Introduction
2. Related Work
2.1. COVID-19 and Sleep Disturbances
2.2. Technology-Aided Patient Monitoring
3. Methods
3.1. Sensor Kit with Non-Invasive Sensors for Sleep Monitoring
3.2. Cloud-Based Architecture
3.3. Machine Learning with Multi-Modal Data
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease 2019 |
SARS-CoV-2 | Severe acute respiratory syndrome—coronavirus 2 |
ARDS | Acute respiratory distress syndrome |
References
- Pires, I.M. A review on Diagnosis and Treatment methods for coronavirus disease with sensors. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 8–9 November 2020. [Google Scholar]
- Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; et al. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 2020, 7, 1012–1023. [Google Scholar] [CrossRef] [Green Version]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [Green Version]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Weiss, P.; Murdoch, D.R. Clinical course and mortality risk of severe COVID-19. Lancet 2020, 395, 1014–1015. [Google Scholar] [CrossRef]
- Du, R.H.; Liu, L.M.; Yin, W.; Wang, W.; Guan, L.L.; Yuan, M.L.; Li, Y.L.; Hu, Y.; Li, X.Y.; Sun, B.; et al. Hospitalization and critical care of 109 decedents with COVID-19 pneumonia in Wuhan, China. Ann. Am. Thorac. Soc. 2020, 17, 839–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goh, K.J.; Kalimuddin, S.; Chan, K.S. Rapid progression to acute respiratory distress syndrome: Review of current understanding of critical illness from coronavirus disease 2019 (COVID-19) infection. Ann. Acad. Med. Singapore 2020, 49, 108–118. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F. Persistent symptoms in patients after acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Dimitrievski, A.; Zdravevski, E.; Lameski, P.; Trajkovik, V. Towards application of non-invasive environmental sensors for risks and activity detection. In Proceedings of the 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 8–10 September 2016; pp. 27–33. [Google Scholar]
- Dimitrievski, A.; Zdravevski, E.; Lameski, P.; Goleva, R.; Koceski, S.; Trajkovik, V. Fog Computing for Personal Health Principles. In Proceedings of the 8th International Conference on Applied Internet and Information Technologies, Hammamet, Tunisia, 20–22 December 2018; Volume 8, pp. 109–114. [Google Scholar]
- Dimitrievski, A.; Savoska, S.; Trajkovikj, V. Fog Computing for Personal Health: Case Study for Sleep Apnea Detection. In Proceedings of the 13th Conference on Information Systems and Grid Technologie, Sofia, Bulgaria, 29–30 May 2020. [Google Scholar]
- Kashani, K.B. Hypoxia in COVID-19: Sign of Severity or Cause for Poor Outcomes. In Mayo Clinic Proceedings; Mayo Foundation for Medical Education and Research: Rochester, NY, USA, 2020; Volume 95, pp. 1094–1096. [Google Scholar]
- Teo, J. Early Detection of Silent Hypoxia in Covid-19 Pneumonia Using Smartphone Pulse Oximetry. J. Med Syst. 2020, 44, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Asano, K.; Okudaira, N. Sleep and respiration under acute hypobaric hypoxia. Jpn. J. Physiol. 1993, 43, 161–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEvoy, R.D. Obstructive Sleep Apnoea and Hypertension: The ESADA Study. Eur. Respir. J. 2014, 44, 835–838. [Google Scholar] [CrossRef] [Green Version]
- Su, V.Y.F.; Liu, C.J.; Wang, H.K.; Wu, L.A.; Chang, S.C.; Perng, D.W.; Su, W.J.; Chen, Y.M.; Lin, E.Y.H.; Chen, T.J.; et al. Sleep apnea and risk of pneumonia: A nationwide population-based study. Cmaj 2014, 186, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Pazarlı, A.C.; Ekiz, T.; İlik, F. Coronavirus disease 2019 and obstructive sleep apnea syndrome. Sleep Breath. Schlaf Atm. 2020, 25, 371. [Google Scholar] [CrossRef]
- McSharry, D.; Malhotra, A. Potential influences of obstructive sleep apnea and obesity on COVID-19 severity. J. Clin. Sleep Med. 2020, 16, 1645. [Google Scholar] [CrossRef]
- Froelich, S.; Mandonnet, E.; Julla, J.B.; Touchard, C.; Laloi-Michelin, M.; Kevorkian, J.P.; Gautier, J.F. Towards individualized and optimalized positioning of non-ventilated COVID-19 patients: Putting the affected parts of the lung (s) on top? Diabetes Metab. 2020, 47, 101167. [Google Scholar] [CrossRef]
- Battleman, D.S.; Callahan, M.; Thaler, H.T. Rapid antibiotic delivery and appropriate antibiotic selection reduce length of hospital stay of patients with community-acquired pneumonia: Link between quality of care and resource utilization. Arch. Intern. Med. 2002, 162, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Clarke, A. Length of in-hospital stay and its relationship to quality of care. BMJ Qual. Saf. 2002, 11, 209–210. [Google Scholar] [CrossRef]
- Fox, N.; Hirsch-Allen, A.; Goodfellow, E.; Wenner, J.; Fleetham, J.; Ryan, C.F.; Kwiatkowska, M.; Ayas, N.T. The impact of a telemedicine monitoring system on positive airway pressure adherence in patients with obstructive sleep apnea: A randomized controlled trial. Sleep 2012, 35, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Malasinghe, L.P.; Ramzan, N.; Dahal, K. Remote patient monitoring: A comprehensive study. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Vegesna, A.; Tran, M.; Angelaccio, M.; Arcona, S. Remote patient monitoring via non-invasive digital technologies: A systematic review. Telemed. e-Health 2017, 23, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Kotevska, O.; Vlahu-Gjorgievska, E.; Trajkovic, V.; Koceski, S. Towards a patient-centered collaborative health care system model. Int. J. Comput. Theory Eng. 2012, 4, 1025. [Google Scholar] [CrossRef] [Green Version]
- Choi, A.; Noh, S.; Shin, H. Internet-Based Unobtrusive Tele-Monitoring System for Sleep and Respiration. IEEE Access 2020, 8, 76700–76707. [Google Scholar] [CrossRef]
- Hwang, S.H.; Cho, J.G.; Choi, B.H.; Baek, H.J.; Lee, Y.J.; Jeong, D.U.; Park, K.S. Real-time automatic apneic event detection using nocturnal pulse oximetry. IEEE Trans. Biomed. Eng. 2017, 65, 706–712. [Google Scholar]
- Shao, D.; Liu, C.; Tsow, F.; Yang, Y.; Du, Z.; Iriya, R.; Yu, H.; Tao, N. Noncontact monitoring of blood oxygen saturation using camera and dual-wavelength imaging system. IEEE Trans. Biomed. Eng. 2015, 63, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Casalino, G.; Castellano, G.; Zaza, G. A mHealth solution for contact-less self-monitoring of blood oxygen saturation. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7. [Google Scholar]
- Somers, V.K.; Dyken, M.E.; Clary, M.P.; Abboud, F.M. Sympathetic neural mechanisms in obstructive sleep apnea. J. Clin. Investig. 1995, 96, 1897. [Google Scholar] [CrossRef] [Green Version]
- Zdravevski, E.; Lameski, P.; Dimitrievski, A.; Grzegorowski, M.; Apanowicz, C. Cluster-size optimization within a cloud-based ETL framework for Big Data. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3754–3763. [Google Scholar] [CrossRef]
- Grzegorowski, M.; Zdravevski, E.; Janusz, A.; Lameski, P.; Apanowicz, C.; Slezak, D. Cost Optimization for Big Data Workloads Based on Dynamic Scheduling and Cluster-Size Tuning. Big Data Res. 2021, 25, 100203. [Google Scholar] [CrossRef]
- Pires, I.M.; Ponciano, V.; Garcia, N.M.; Zdravevski, E. Analysis of the Results of Heel-Rise Test with Sensors: A Systematic Review. Electronics 2020, 9, 1154. [Google Scholar] [CrossRef]
- Marques, D.L.; Neiva, H.P.; Pires, I.M.; Zdravevski, E.; Mihajlov, M.; Garcia, N.M.; Ruiz-Cárdenas, J.D.; Marinho, D.A.; Marques, M.C. An Experimental Study on the Validity and Reliability of a Smartphone Application to Acquire Temporal Variables during the Single Sit-to-Stand Test with Older Adults. Sensors 2021, 21, 2050. [Google Scholar] [CrossRef]
- Pires, I.M.; Garcia, N.M.; Zdravevski, E. Measurement of Results of Functional Reach Test with Sensors: A Systematic Review. Electronics 2020, 9, 1078. [Google Scholar] [CrossRef]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Marques, G.; Garcia, N.M.; Pombo, N.; Spinsante, S.; Zdravevski, E. Is The Timed-Up and Go Test Feasible in Mobile Devices? A Systematic Review. Electronics 2020, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Villasana, M.V.; Canavarro Teixeira, M.; Zdravevski, E. Experimental Study for Determining the Parameters Required for Detecting ECG and EEG Related Diseases during the Timed-Up and Go Test. Computers 2020, 9, 67. [Google Scholar] [CrossRef]
- Esling, P.; Agon, C. Time-series Data Mining. ACM Comput. Surv. 2012, 45, 12:1–12:34. [Google Scholar] [CrossRef] [Green Version]
- Zdravevski, E.; Lameski, P.; Trajkovik, V.; Kulakov, A.; Chorbev, I.; Goleva, R.; Pombo, N.; Garcia, N. Improving Activity Recognition Accuracy in Ambient-Assisted Living Systems by Automated Feature Engineering. IEEE Access 2017, 5, 5262–5280. [Google Scholar] [CrossRef]
- Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdravevski, E.; Lameski, P.; Kulakov, A.; Kalajdziski, S. Transformation of nominal features into numeric in supervised multi-class problems based on the weight of evidence parameter. In Proceedings of the 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13–16 September 2015; pp. 169–179. [Google Scholar]
- Lahat, D.; Adali, T.; Jutten, C. Multimodal data fusion: An overview of methods, challenges, and prospects. Proc. IEEE 2015, 103, 1449–1477. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, H.; Pirbhulal, S.; Wu, W.; Albuquerque, V.H.C.D. Active balancing mechanism for imbalanced medical data in deep learning–based classification models. ACM Trans. Multimed. Comput. Commun. Appl. TOMM 2020, 16, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [Google Scholar] [CrossRef]
- Salehinejad, H.; Valaee, S.; Dowdell, T.; Colak, E.; Barfett, J. Generalization of deep neural networks for chest pathology classification in X-rays using generative adversarial networks. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 990–994. [Google Scholar]
- Kalantari, A.; Kamsin, A.; Shamshirband, S.; Gani, A.; Alinejad-Rokny, H.; Chronopoulos, A.T. Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions. Neurocomputing 2018, 276, 2–22. [Google Scholar] [CrossRef]
- Petrovska, B.; Atanasova-Pacemska, T.; Corizzo, R.; Mignone, P.; Lameski, P.; Zdravevski, E. Aerial Scene Classification through Fine-Tuning with Adaptive Learning Rates and Label Smoothing. Appl. Sci. 2020, 10, 5792. [Google Scholar] [CrossRef]
- Li, J.P.; Haq, A.U.; Din, S.U.; Khan, J.; Khan, A.; Saboor, A. Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare. IEEE Access 2020, 8, 107562–107582. [Google Scholar] [CrossRef]
- Tjoa, E.; Guan, C. A survey on explainable artificial intelligence (xai): Toward medical xai. IEEE Trans. Neural Networks Learn. Syst. 2020. [Google Scholar] [CrossRef]
- Ramon, Y.; Martens, D.; Provost, F.; Evgeniou, T. A comparison of instance-level counterfactual explanation algorithms for behavioral and textual data: SEDC, LIME-C and SHAP-C. Adv. Data Anal. Classif. 2020, 14, 801–819. [Google Scholar] [CrossRef]
- Cade, B.E.; Dashti, H.S.; Hassan, S.M.; Redline, S.; Karlson, E.W. Sleep apnea and COVID-19 mortality and hospitalization. Am. J. Respir. Crit. Care Med. 2020, 202, 1462–1464. [Google Scholar] [CrossRef]
- Tufik, S. Obstructive Sleep Apnea as a comorbidity to Covid-19. Sleep Sci. 2020, 13, 181. [Google Scholar]
- Maas, M.B.; Kim, M.; Malkani, R.G.; Abbott, S.M.; Zee, P.C. Obstructive Sleep Apnea and Risk of COVID-19 Infection, Hospitalization and Respiratory Failure. Sleep Breath. 2020, 1–3. [Google Scholar] [CrossRef]
- Lee, C.M.; Herridge, M.S.; Gabor, J.Y.; Tansey, C.M.; Matte, A.; Hanly, P.J. Chronic sleep disorders in survivors of the acute respiratory distress syndrome. Intensive Care Med. 2009, 35, 314. [Google Scholar] [CrossRef] [PubMed]
- Dhooria, S.; Sehgal, I.S.; Agrawal, A.K.; Agarwal, R.; Aggarwal, A.N.; Behera, D. Sleep after critical illness: Study of survivors of acute respiratory distress syndrome and systematic review of literature. Indian J. Crit. Care Med. Peer Rev. Off. Publ. Indian Soc. Crit. Care Med. 2016, 20, 323. [Google Scholar]
- Thorpy, M.; Figuera-Losada, M.; Ahmed, I.; Monderer, R.; Petrisko, M.; Martin, C.; Akhtar, J.; Thorpy, J.; Haines, C. Management of sleep apnea in New York City during the COVID-19 pandemic. Sleep Med. 2020, 74, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Voulgaris, A.; Ferini-Strambi, L.; Steiropoulos, P. Sleep medicine and COVID-19. Has a new era begun? Sleep Med. 2020, 73, 170–176. [Google Scholar] [CrossRef] [PubMed]
Sensor | Min | Mean | Max |
---|---|---|---|
Piezoelectric | 37 | 52.03 | 736 |
Piezoelectric (normalized) | 0 | 0.021503 | 1 |
PIR1 | 0 | 0.009828 | 1 |
PIR2 | 0 | 0.028537 | 1 |
PIR3 | 0 | 0.029203 | 1 |
PIR4 | 0 | 0.030796 | 1 |
PIR5 | 0 | 0.018591 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrievski, A.; Zdravevski, E.; Lameski, P.; Villasana, M.V.; Miguel Pires, I.; Garcia, N.M.; Flórez-Revuelta, F.; Trajkovik, V. Towards Detecting Pneumonia Progression in COVID-19 Patients by Monitoring Sleep Disturbance Using Data Streams of Non-Invasive Sensor Networks. Sensors 2021, 21, 3030. https://doi.org/10.3390/s21093030
Dimitrievski A, Zdravevski E, Lameski P, Villasana MV, Miguel Pires I, Garcia NM, Flórez-Revuelta F, Trajkovik V. Towards Detecting Pneumonia Progression in COVID-19 Patients by Monitoring Sleep Disturbance Using Data Streams of Non-Invasive Sensor Networks. Sensors. 2021; 21(9):3030. https://doi.org/10.3390/s21093030
Chicago/Turabian StyleDimitrievski, Ace, Eftim Zdravevski, Petre Lameski, María Vanessa Villasana, Ivan Miguel Pires, Nuno M. Garcia, Francisco Flórez-Revuelta, and Vladimir Trajkovik. 2021. "Towards Detecting Pneumonia Progression in COVID-19 Patients by Monitoring Sleep Disturbance Using Data Streams of Non-Invasive Sensor Networks" Sensors 21, no. 9: 3030. https://doi.org/10.3390/s21093030
APA StyleDimitrievski, A., Zdravevski, E., Lameski, P., Villasana, M. V., Miguel Pires, I., Garcia, N. M., Flórez-Revuelta, F., & Trajkovik, V. (2021). Towards Detecting Pneumonia Progression in COVID-19 Patients by Monitoring Sleep Disturbance Using Data Streams of Non-Invasive Sensor Networks. Sensors, 21(9), 3030. https://doi.org/10.3390/s21093030