Ambient Light Rejection Integrated Circuit for Autonomous Adaptation on a Sub-Retinal Prosthetic System
Abstract
:1. Introduction
2. Materials and Methods
2.1. ISNS Pixel Design
2.2. Autonomous Adaptation Optimization
3. Results
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayton, L.N.; Barnes, N.; Dagnelie, G.; Fujikado, T.; Goetz, G.; Hornig, R.; Jones, B.W.; Muqit, M.M.; Rathbun, D.L.; Stingl, K. An update on retinal prostheses. Clin. Neurophysiol. 2020, 131, 1383–1398. [Google Scholar] [CrossRef]
- Humayun, M.S.; de Juan, E., Jr.; Weiland, J.D.; Dagnelie, G.; Katona, S.; Greenberg, R.; Suzuki, S. Pattern electrical stimulation of the human retina. Vision Res. 1999, 39, 2569–2576. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.L.; Greenberg, P.B.; Borton, D.A. Advances in retinal prosthetic research: A systematic review of engineering and clinical characteristics of current prosthetic initiatives. Curr. Eye Res. 2017, 42, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.L.; Cottriall, C.L.; Xue, K.; Simunovic, M.P.; Ramsden, J.D.; Zrenner, E.; MacLaren, R.E. Assessment of the electronic retinal implant alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa. Ophthalmology 2018, 125, 432–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortmanns, M.; Rocke, A.; Gehrke, M.; Tiedtke, H.-J. A 232-channel epiretinal stimulator ASIC. IEEE J. Solid-State Circuits 2007, 42, 2946–2959. [Google Scholar] [CrossRef]
- Chen, K.; Yang, Z.; Hoang, L.; Weiland, J.; Humayun, M.; Liu, W. An integrated 256-channel epiretinal prosthesis. IEEE J. Solid-State Circuits 2010, 45, 1946–1956. [Google Scholar] [CrossRef]
- Park, J.H.; Tan, J.S.Y.; Wu, H.; Dong, Y.; Yoo, J. 1225-channel neuromorphic retinal-prosthesis SoC with localized temperature-regulation. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1230–1240. [Google Scholar] [CrossRef]
- Huang, T.W.; Kamins, T.I.; Chen, Z.C.; Wang, B.-Y.; Bhuckory, M.; Galambos, L.; Ho, E.; Ling, T.; Afshar, S.; Shin, A. Vertical-junction photodiodes for smaller pixels in retinal prostheses. J. Neural Eng. 2021, 18, 036015. [Google Scholar] [CrossRef]
- Tomioka, K.; Toyoda, K.; Ishizaki, T.; Noda, T.; Ohta, J.; Kimura, M. Retinal Prosthesis Using Thin-Film Devices on a Transparent Substrate and Wireless Power Transfer. IEEE Trans. Electron Devices 2020, 67, 529–534. [Google Scholar] [CrossRef]
- Thompson, R.W.; Barnett, G.D.; Humayun, M.S.; Dagnelie, G. Facial recognition using simulated prosthetic pixelized vision. Invest. Ophthalmol. Visual Sci. 2003, 44, 5035–5042. [Google Scholar] [CrossRef] [Green Version]
- Ho, A.C.; Humayun, M.S.; Dorn, J.D.; Da Cruz, L.; Dagnelie, G.; Handa, J.; Barale, P.-O.; Sahel, J.-A.; Stanga, P.E.; Hafezi, F. Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology 2015, 122, 1547–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daschner, R.; Rothermel, A.; Rudorf, R.; Rudorf, S.; Stett, A. Functionality and performance of the subretinal implant chip Alpha AMS. Sens. Mater. 2018, 30, 179–192. [Google Scholar] [CrossRef]
- Matteucci, P.B.; Barriga-Rivera, A.; Eiber, C.D.; Lovell, N.H.; Morley, J.W.; Suaning, G.J. The effect of electric cross-talk in retinal neurostimulation. Invest. Ophthalmol. Visual Sci. 2016, 57, 1031–1037. [Google Scholar] [CrossRef] [Green Version]
- Yue, L.; Weiland, J.D.; Roska, B.; Humayun, M.S. Retinal stimulation strategies to restore vision: Fundamentals and systems. Prog. Retin. Eye Res. 2016, 53, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, E.; Lei, X.; Flores, T.; Lorach, H.; Huang, T.; Galambos, L.; Kamins, T.; Harris, J.; Mathieson, K.; Palanker, D. Characteristics of prosthetic vision in rats with subretinal flat and pillar electrode arrays. J. Neural Eng. 2019, 16, 066027. [Google Scholar] [CrossRef]
- Rothermel, A.; Liu, L.; Aryan, N.P.; Fischer, M.; Wuenschmann, J.; Kibbel, S.; Harscher, A. A CMOS chip with active pixel array and specific test features for subretinal implantation. IEEE J. Solid-State Circuits 2008, 44, 290–300. [Google Scholar] [CrossRef]
- Bigas, M.; Cabruja, E.; Forest, J.; Salvi, J. Review of CMOS image sensors. Microelectron. J. 2006, 37, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Ikebe, M.; Saito, K. A wide-dynamic-range compression image sensor with negative-feedback resetting. IEEE Sens. J. 2007, 7, 897–904. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Chae, Y.; Cho, J.; Han, G. A dual-capture wide dynamic range CMOS image sensor using floating-diffusion capacitor. IEEE Trans. Electron Devices 2008, 55, 2590–2594. [Google Scholar]
- Perenzoni, M.; Massari, N.; Stoppa, D.; Pancheri, L.; Malfatti, M.; Gonzo, L. A 160 × 120-Pixels Range Camera with In-Pixel Correlated Double Sampling and Fixed-Pattern Noise Correction. IEEE J. Solid-State Circuits 2011, 46, 1672–1681. [Google Scholar] [CrossRef]
- Oh, S.; Ahn, J.-H.; Lee, S.; Ko, H.; Seo, J.M.; Goo, Y.-S. Light-controlled biphasic current stimulator IC using CMOS image sensors for high-resolution retinal prosthesis and in vitro experimental results with rd1 mouse. IEEE Trans. Biomed. Circuits Syst. 2014, 62, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Abbasi, W.H.; Kim, S.-W.; Kim, J. Fully Integrated Light-Sensing Stimulator Design for Subretinal Implants. Sensors 2019, 19, 536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katrin, G.; Karl Ulrich, B.; Helmut, S.; Robert, E.M.; Katarina, S.; Eberhart, Z.; Florian, G. Implantation, removal and replacement of subretinal electronic implants for restoration of vision in patients with retinitis pigmentosa. Curr. Opin. Ophthalmol. 2018, 29, 239–247. [Google Scholar]
- Lauren, N.A.; Nick, B.; Gislin, D.; Takashi, F.; Georges, G.; Ralf, H.; Bryan, W.J.; Mahiul, M.K.M.; Daniel, L.R.; Katarina, S.; et al. An update on retinal prostheses. Clin. Neurophysiol. 2020, 131, 1383–1398. [Google Scholar]
- Merrill, D.R.; Bikson, M.; Jefferys, J.G. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J. Neurosci. Methods 2005, 141, 171–198. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, S.; Nitta, Y.; Kikuchi, M.; Koseki, K.; Ito, Y.; Inada, Y.; Kuramochi, S.; Wakabayashi, H.; Okano, M.; Kuriyama, H. A 1/1.8-inch 6.4 MPixel 60 frames/s CMOS image sensor with seamless mode change. IEEE J. Solid-State Circuits 2006, 41, 2998–3006. [Google Scholar] [CrossRef]
- Nitta, Y.; Muramatsu, Y.; Amano, K.; Toyama, T.; Mishina, K.; Suzuki, A.; Taura, T.; Kato, A.; Kikuchi, M.; Yasui, Y. High-speed digital double sampling with analog CDS on column parallel ADC architecture for low-noise active pixel sensor. In Proceedings of the 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers, San Francisco, CA, USA, 6–9 February 2006; pp. 2024–2031. [Google Scholar]
- Bazes, M. Two novel fully complementary self-biased CMOS differential amplifiers. IEEE J. Solid-State Circuits 1991, 26, 165–168. [Google Scholar] [CrossRef]
- Figueiredo, M.; Santos-Tavares, R.; Santin, E.; Ferreira, J.; Evans, G.; Goes, J. A two-stage fully differential inverter-based self-biased CMOS amplifier with high efficiency. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 1591–1603. [Google Scholar] [CrossRef]
- Franks, W.; Schenker, I.; Schmutz, P.; Hierlemann, A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 2005, 52, 1295–1302. [Google Scholar] [CrossRef]
- John, S.E.; Apollo, N.V.; Opie, N.L.; Rind, G.S.; Ronayne, S.M.; May, C.N.; Oxley, T.J.; Grayden, D.B. In vivo impedance characterization of cortical recording electrodes shows dependence on electrode location and size. IEEE Trans. Biomed. Circuits Syst. 2018, 66, 675–681. [Google Scholar] [CrossRef]
- Andrea, C.; Thoralf, H.; Günther, Z. Electrode-size dependent thresholds in subretinal neuroprosthetic stimulation. J. Neural Eng. 2021, 15, 045003. [Google Scholar]
- Daniel, P.; Yannick, L.M.; Saddek, M.; Mahiul, M.; Jose, A.S. Photovoltaic Restoration of Central Vision in Atrophic Age-Related Macular Degeneration. Ophthalmology 2020, 127, 1097–1104. [Google Scholar]
- Rothermel, A.; Kaim, H.; Gambach, S.; Schuetz, H.; Moll, S.; Steinhoff, R.; Herrmann, T.; Zeck, G. Subretinal Stimulation Chip Set with 3025 Electrodes, Spatial Peaking Filter, Illumination Adaptation and Implant Lifetime Optimization. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4310–4313. [Google Scholar]
- Moll, S.; Gambach, S.; Schütz, H.; Steinhoff, R.; Kaim, H.; Rothermel, A. System design of a physiological ambient illumination adaptation for subretinal stimulator. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1962–1965. [Google Scholar]
Power Consumption (μW) | Area Occupation (μm2) | |
---|---|---|
ALR circuit | 1748.88 (100%) | 189,744.9 (100%) |
Sensor pixel | 93.68 (85.71%) | 97 × 114 (93.24%) |
ISNS pixel | 56.4 | 97 × 114 |
16:1 OR gate | - | 42.4 × 38.21 (0.85%) |
Reference generator | 250 (14.77%) | 156.6 × 71.5 (5.9%) |
TBioCAS’20 [7] | TED’20 [9] | TBioCAS’14 [21] | EMBC’20 [34] | Ophthalmol’20 [8,33] | This Work | |
---|---|---|---|---|---|---|
Technology | 0.18 μm | Custom | 0.35 μm BCD | 0.18 μm HV | Custom | 0.35 μm |
Supply power | Wireless coil | Wireless coil | Wireless coil | Wireless coil | Photovoltaic | Wireless coil |
Electrode location | Sub-retina | Sub-retina | Sub-retina | Sub-retina | Sub-retina | Sub-retina |
Stimulus approach | Simultaneous | Simultaneous | Sequential | Sequential | Simultaneous | Sequential |
Pixel number | 1225 | 100 | 128 | 3025 | 378 | 256 |
Pixel size (μm2) | 84.3 × 86.6 | 400 × 400 | 50 × 55 | 51.5 × 51.7 | 7500 | 97 × 114 |
Chip size (mm2) | 5 × 3.45 | 4 × 4 | 2.5 × 1.2 | 3.14 × 3.94 | 2 × 2 | 5 × 4 |
Stimulus current [loading parameter] | ≤3 mA (10 kΩ resistor) | ≤3 μA (PBS solution) | ≤300 μA (10 kΩ resistor) | ≤18 μA (PBS solution) | N/A | ≤150 μA (10 kΩ resistor) |
Supply voltage | ± 1.6 V | 5 V | 12 V | ± 1.6 V | N/A | ±1.6 V |
Application |
| N/A | N/A |
| N/A |
|
Power consumption | 2.7 mW | 320 μW | N/A | N/A | N/A | 3.2 mW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.; Choi, H.; Kim, J. Ambient Light Rejection Integrated Circuit for Autonomous Adaptation on a Sub-Retinal Prosthetic System. Sensors 2021, 21, 5638. https://doi.org/10.3390/s21165638
Kang H, Choi H, Kim J. Ambient Light Rejection Integrated Circuit for Autonomous Adaptation on a Sub-Retinal Prosthetic System. Sensors. 2021; 21(16):5638. https://doi.org/10.3390/s21165638
Chicago/Turabian StyleKang, Hosung, Hojong Choi, and Jungsuk Kim. 2021. "Ambient Light Rejection Integrated Circuit for Autonomous Adaptation on a Sub-Retinal Prosthetic System" Sensors 21, no. 16: 5638. https://doi.org/10.3390/s21165638