Terahertz Imaging for Breast Cancer Detection
Abstract
:1. Introduction
2. Dielectric Properties of Breast Tissue
3. THz Imaging and Spectroscopy
4. THz Radiation Sources
5. THz Imaging for Breast Cancer Detection
6. Chemometrics Methods in THz Imaging
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics 2021. CA A Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, X.; Sheng, L.; Xu, S.; Dong, L.; Liu, L. Perioperative chemotherapy more of a benefit for overall survival than adjuvant chemotherapy for operable gastric cancer: An updated meta-analysis. Sci. Rep. 2015, 5, 12850. [Google Scholar] [CrossRef] [Green Version]
- Pleijhuisc, R.G.; Bsc, M.G.; Vries, J.D.; Bart, J.; Jong, J.S.D.; Dam, G.M.V. Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: Current modalities and future directions. Ann. Surg. Oncol. 2009, 16, 2717–2730. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, P.C.; O’Kelly, P.; Purushotham, A.D.; Pinder, S.E.; Kontos, M.; Pepper, M.; Wallace, V.P. An intra-operative THz probe for use during the surgical removal of breast tumors. In Proceedings of the 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, 15–19 September 2008; pp. 1–3. [Google Scholar] [CrossRef]
- Wang, L. Microwave Sensors for Breast Cancer Detection. Sensors 2018, 18, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellquist, B.N.; Czene, K.; Hjälm, A.; Nyström, L.; Jonsson, H. Effectiveness of population-based service screening with mammography for women ages 40 to 49 years with a high or low risk of breast cancer: Socioeconomic status, parity, and age at birth of first child. Cancer 2012, 118, 1170–1171. [Google Scholar] [CrossRef]
- Drukker, K.; Sennett, C.A.; Giger, M.L. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts. Med. Phys. 2014, 41, 012901-1–012901-9. [Google Scholar] [CrossRef] [Green Version]
- Morrow, M.; Waters, J.; Morris, E. MRI for breast cancer screening, diagnosis, and treatment. Lancet 2011, 378, 1804–1811. [Google Scholar] [CrossRef]
- Jones, E.F.; Ray, K.M.; Li, W.; Seo, Y.; Franc, B.L.; Chien, A.J.; Esserman, L.J.; Pampaloni, M.H.; Joe, B.N.; Hylton, N.M. Dedicated breast positron emission tomography for the evaluation of early response to neoadjuvant chemotherapy in breast cancer. Clin. Breast Cancer 2017, 17, e155. [Google Scholar] [CrossRef]
- Berry, E.; Walker, G.C.; Fitzgerald, A.J.; Zinov’Ev, N.N.; Chamberlain, M.; Smye, S.W.; Smith, M.A. Do in vivo terahertz imaging systems comply with safety guidelines? J. Laser Appl. 2003, 15, 192–198. [Google Scholar] [CrossRef]
- Zaytsev, I.; Dolganova, I.N.; Chernomyrdin, N.V.; Katyba, G.M.; Gavdush, A.A.; Cherkasova, O.P.; Komandin, G.A.; Shchedrina, M.A.; Khodan, A.N.; Ponomarev, D.S.; et al. The progress and perspectives of terahertz technology for diagnosis of neoplasms: A review. J. Opt. 2020, 22, 013001. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef]
- Rønne, C.; Keiding, S.R. Low frequency spectroscopy of liquid water using THz-time domain spectroscopy. J. Mol. Liq. 2002, 101, 199–218. [Google Scholar] [CrossRef]
- Orlando, A.R.; Gallerano, G.P. Terahertz radiation effects and biological applications. J. Infrared Millim. Terahertz Waves 2009, 30, 1308–1318. [Google Scholar] [CrossRef]
- Qian, S.; Zhao, Y.; Redo-Sanchez, A.; Zhang, C.; Liu, X. Fast continuous terahertz wave imaging system for security. Opt. Commun. 2009, 282, 2019–2022. [Google Scholar]
- Tohmé, L.; Blin, S.; Ducournau, G.; Nouvel, P.; Lampin, J.F. Terahertz wireless communication using gaas transistors as detectors. Electron. Lett. 2014, 50, 323–325. [Google Scholar] [CrossRef]
- Malhotra, I.; Jha, K.R.; Singh, G. Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications. Opt. Commun. 2017, 397, 129–139. [Google Scholar] [CrossRef]
- Kawano, Y. Terahertz sensing and imaging based on nanostructured semiconductors and carbon materials. Laser Photonics Rev. 2012, 6, 246–257. [Google Scholar] [CrossRef]
- Mathanker, S.K.; Weckler, P.R.; Wang, N. Terahertz (THz) applications in food and agriculture: A review. Trans. Am. Soc. Agric. Biol. Eng. 2013, 56, 1213–1226. [Google Scholar]
- Son, J.H.; Oh, S.J.; Cheon, H. Potential clinical applications of terahertz radiation. J. Appl. Phys. 2019, 125, 190901. [Google Scholar] [CrossRef]
- Tunnacliffe, A.; Zeitler, J.A.; Lin, H.; Dennis, A.R.; Chau, D. Determination of water content in dehydrated mammalian cells using terahertz pulsed imaging: A feasibility study. Curr. Pharm. Biotechnol. 2015, 17, 200–207. [Google Scholar]
- Sy, S.; Huang, S.Y.; Xiang, Y. Terahertz spectroscopy of liver cirrhosis: Investigating the origin of contrast. Phys. Med. Biol. 2010, 55, 7587–7596. [Google Scholar] [CrossRef] [PubMed]
- Baughman, W.E.; Yokus, H.; Balci, S.; Wilbert, D.S. Observation of hydrofluoric acid burns on osseous tissues by means of terahertz spectroscopic imaging. IEEE J. Biomed. Health Inform. 2013, 3, 387–394. [Google Scholar]
- Mavarani, L.; Hillger, P.; Buecher, T.; Grzyb, J.; Pfeiffer, U.R.; Cassar, Q.; Al-Ibadi, A.; Zimmer, T.; Guillet, J.-P.; Mounaix, P.; et al. Nearsense- advances towards a silicon-based terahertz near-field imaging sensor for ex vivo breast tumour identification. Frequenz 2018, 72, 93–99. [Google Scholar] [CrossRef]
- Doradla, P.; Joseph, C.; Giles, R.H. Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives. World J. Gastrointest. Endosc. 2017, 8, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Shin, S.; Roh, Y.; Oh, S.J.; Seo, M. Label-free brain tissue imaging using large-area terahertz metamaterials. Biosens. Bioelectron. 2020, 170, 112663. [Google Scholar] [CrossRef] [PubMed]
- Lindley-Hatcher, H.; Stantchev, R.I.; Chen, X.; Hernandez-Serrano, A.I.; Pickwell-Macpherson, E. Real time THz imaging—opportunities and challenges for skin cancer detection. Appl. Phys. Lett. 2021, 118, 230501. [Google Scholar] [CrossRef]
- Hua, Y.; Nackaerts, O.; Duyck, J.; Maes, F.; Jacobs, R. Bone quality assessment based on cone beam computed tomography imaging. Clin. Oral Implant. Res. 2010, 20, 767–771. [Google Scholar] [CrossRef]
- Kolesnikov, A.S.; Kolesnikova, E.A.; Popov, A.P.; Nazarov, M.M.; Shkurinov, A.P.; Tuchin, V.V. In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents. Quantum Electron. 2014, 44, 633. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, C.J.; Wu, X.; Yiming Zhu, Y.M.; Zhuang, S.L. Terahertz Imaging and Spectroscopy in Cancer Diagnostics: A Technical Review. BME Front. 2020, 2020, 2547609. [Google Scholar] [CrossRef]
- Wallace, V.P.; Fitzgerald, A.J.; Shankar, S.; Flanagan, N.; Pye, R.; Cluff, J.; Arnone, D.D. Dermatological Surgery and Lasers: Terahertz Pulsed Imaging of Basal Cell Carcinoma Ex Vivo and in Vivo. Br. J. Dermatol. 2004, 151, 424–432. [Google Scholar] [CrossRef]
- Fitzgerald, A.J.; Wallace, V.P.; Jimenez-Linan, M.; Bobrow, L.; Pye, R.J.; Purushotham, A.D.; Arnone, D.D. Terahertz Pulsed Imaging of human breast tumors. Radiology 2006, 239, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, P.C.; Pickwell-Macpherson, E.; Provenzano, E.; Pinder, S.E.; Wallace, V.P. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt. Express 2009, 17, 12444–12454. [Google Scholar] [CrossRef] [PubMed]
- Bowman, T.; El-Shenawee, M.; Campbell, L.K. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas. Biomed. Opt. Express 2016, 7, 3756–3783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, T.; Wu, Y.; Gauch, J.; Campbell, L.K.; El-Shenawee, M. Terahertz imaging of three-dimensional dehydrated breast cancer tumors. J. Infrared Millim. Terahertz Waves 2017, 38, 766–786. [Google Scholar] [CrossRef]
- Bowman, T.; Chavez, T.; Khan, K.; Wu, J.; El-Shenawee, M. Pulsed terahertz imaging of breast cancer in freshly excised murine tumors. J. Biomed. Opt. 2018, 23, 026004. [Google Scholar] [CrossRef] [Green Version]
- Grootendorst, M.R.; Fitzgerald, A.J.; Koning, S.; Santaolalla, A.; Purushotham, A. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue. Biomed. Opt. Express 2017, 8, 2932. [Google Scholar] [CrossRef] [Green Version]
- Cassar, Q.; Alibadi, A.; Macgrogan, G.; Grzyb, J.; Guillet, J.P.; Mavarani, L.; Mounaix, P. Pilot study of freshly excised breast tissue response in the 300–600 GHz range. Biomed. Opt. Express 2018, 9, 2930–2942. [Google Scholar] [CrossRef]
- Ahi, K.; Asadizanjani, N.; Shahbazmohamadi, S.; Tehranipoor, M.; Anwar, M. Terahertz characterization of electronic components and comparison of terahertz imaging with x-ray imaging techniques. Terahertz Phys. Devices Syst. IX Adv. Appl. Ind. Def. 2015, 94830, 94830K. [Google Scholar]
- Motlak, H.J.; Hakeem, S.I. Detection and classification of breast cancer based-on terahertz imaging technique using artificial neural network & K-nearest neighbor algorithm. Int. J. Appl. Eng. Res. 2017, 12, 10661–10668. [Google Scholar]
- Yin, X.; Ng, W.H.; Fischer, B.M.; Ferguson, B.; Abbott, D. Support vector machine applications in terahertz pulsed signals feature sets. IEEE Sens. J. 2007, 7, 1597–1608. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A.; Sengupta, A.; Sinyukov, A.M.; Barat, R.B.; Gary, D.E.; Michalopoulou, Z.-H.; Federici, J. Artificial neural network analysis in interferometric THz imaging for detection of lethal agents. Int. J. Infrared Millim. Waves 2006, 27, 1145–1158. [Google Scholar] [CrossRef]
- Long, Z.Y.; Wang, T.Y.; Wu, C.; You, C.; Yang, Z.; Wang, K.; Liu, J. Terahertz image super-resolution based on a deep convolutional neural network. Appl. Opt. 2019, 58, 2731–2735. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.X.; Hadjiloucas, S.; Zhang, Y. Complex extreme learning machine applications in terahertz pulsed signals feature sets. Comput. Methods Programs Biomed. 2014, 117, 387–403. [Google Scholar] [CrossRef] [PubMed]
- Ayech, M.W.; Ziou, D. Segmentation of terahertz imaging using k-means clustering based on ranked set sampling. Expert Syst. Appl. 2015, 42, 2959–2974. [Google Scholar] [CrossRef]
- Huang, J.; Liu, J.; Wang, K.; Yang, Z.; Liu, X. Classification and identification of molecules through factor analysis method based on terahertz spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 198–203. [Google Scholar] [CrossRef]
- Stephani, H.; Herrmann, M.; Wiesauer, K.; Katletz, S.; Heise, B. Enhancing the interpretability of terahertz data through unsupervised classification. In Proceedings of the XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal, 6–11 September 2009; Volume 1, pp. 2329–2334. [Google Scholar]
- Sinyukov, A.; Zorych, I.; Michalopoulou, Z.H.; Gary, D.; Barat, R.; Federici, J.F. Detection of explosives by terahertz synthetic aperture imaging—focusing and spectral classification. Comptes Rendus Phys. 2008, 9, 248–261. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Chen, T.; Xu, D.; Zhao, H.; Chen, L.Y.; Yan, C.; Tang, L.H.; He, Y.X.; Feng, H.; et al. Automatic evaluation of traumatic brain injury based on terahertz imaging with machine learning. Opt. Express 2018, 26, 6371–6381. [Google Scholar] [CrossRef]
- Smye, S.W.; Chamberlain, J.M.; Fitzgerald, A.J.; Berry, E. The interaction between terahertz radiation and biological tissue. Phys. Med. Biol. 2001, 46, R101. [Google Scholar] [CrossRef] [PubMed]
- Pickwell, E.; Cole, B.E.; Fitzgerald, A.J.; Wallace, V.P.; Pepper, M. Simulation of terahertz pulse propagation in biological systems. Appl. Phys. Lett. 2004, 84, 2190–2192. [Google Scholar] [CrossRef]
- Liebe, H.J.; Hufford, G.A.; Manabe, T. A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millim. Waves 1991, 12, 659–675. [Google Scholar] [CrossRef]
- Reid, C.B.; Pickwell-Macpherson, E.; Laufer, J.G.; Gibson, A.P.; Hebden, J.C.; Wallace, V.P. Accuracy and resolution of THz reflection spectroscopy for medical imaging. Phys. Med. Biol. 2010, 55, 4825. [Google Scholar] [CrossRef] [Green Version]
- Truong, B.C.Q.; Tuan, H.D.; Kha, H.H.; Nguyen, H.T. Debye parameter extraction for characterizing interaction of terahertz radiation with human skin tissue. IEEE Trans. Biomed. Eng. 2013, 60, 1528–1537. [Google Scholar] [CrossRef]
- Hurt, W.D. Multiterm Debye dispersion relations for permittivity of muscle. IEEE Trans. Biomed. Eng. 1985, 32, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: Iii. parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, B.; Tuan, H.D.; Fitzgerald, A.J.; Wallace, V.P.; Nguyen, H.T. A dielectric model of human breast tissue in terahertz regime. IEEE Trans. Biomed. Eng. 2015, 62, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Hartwick, T.S.; Hodges, D.T.; Barker, D.H.; Foote, F.B. Far infrared imagery. Appl. Opt. 1976, 15, 1919–1922. [Google Scholar] [CrossRef]
- Hu, B.B.; Nuss, M.C. Imaging with terahertz waves. Opt. Lett. 1995, 20, 1716–1718. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Huai, B.; Wang, S.; Zheng, Y. Continuous-wave THz imaging for biomedical samples. Appl. Sci. 2020, 11, 71. [Google Scholar] [CrossRef]
- Malhotra, I.; Singh, G. Terahertz Antenna Technology for Imaging and Sensing Applications; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-030-68959-9. [Google Scholar]
- Sun, C.; Zhang, A. Efficient terahertz generation from lightly ion-beam-treated semi-insulating gas photoconductive antennas. Appl. Phys. Express 2017, 10, 102202. [Google Scholar] [CrossRef]
- Takeya, K.; Okimura, K.; Oota, K.; Kawase, K.; Uchida, H. Pump wavelength-independent broadband terahertz generation from a nonlinear optical crystal. Opt. Lett. 2018, 43, 4100. [Google Scholar] [CrossRef]
- Gildenburg, V.B.; Vvedenskii, N.V. Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process. Phys. Rev. Lett. 2007, 98, 245002.1–245002.4. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, W.; Zhu, H. Design and characterization of CMOS transmission lines in sub-THz region. Electromagnetics 2017, 37, 331–344. [Google Scholar] [CrossRef]
- Berry, E.; Fitzgerald, A.J.; Zinov’Ev, N.N.; Walker, G.C.; Smith, M.A. Optical properties of tissue measured using terahertz-pulsed imaging. Proc. SPIE -Int. Soc. Opt. Eng. 2003, 5030, 459–470. [Google Scholar]
- Chen, H.; Lee, W.J.; Chiu, C.M.; Tsai, Y.F.; Tseng, T.F.; Lu, J.T.; Lai, W.L.; Sun, C.K. Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors. Opt. Express 2011, 19, 19523–19531. [Google Scholar] [CrossRef]
- Chen, H.; Chen, T.H.; Fu, S.C.; Lee, W.J.; Sun, C.K. In vivo THz fiber-scanning mammography of early breast cancer in mice. In Proceedings of the 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, Houston, TX, USA, 2–7 October 2011; pp. 1–3. [Google Scholar] [CrossRef]
- Joseph, C.; Yaroslavsky, A.; Neel, V.; Goyette, T.; Giles, R. Dual Frequency Continuous Wave Terahertz Transmission Imaging of Nonmelanoma Skin Cancers. Laser. Surg. Med. 2011, 43, 457–462. [Google Scholar] [CrossRef]
- Peter, B.; Yngvesson, S.; Siqueira, P.; Kelly, P.; Khan, A.; Glick, S.; Karellas, A. Development and Testing of a Single Frequency Terahertz Imaging System for Breast Cancer Detection. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 374–386. [Google Scholar] [CrossRef] [Green Version]
- Bowman, T.C.; El-Shenawee, M.; Campbell, L.K. Terahertz imaging of excised breast tumor tissue on paraffin sections. IEEE Trans. Antennas Propag. 2015, 63, 2088–2097. [Google Scholar] [CrossRef]
- Bowman, T.C.; El-Shenawee, M.; Bailey, K. Challenges in Terahertz Imaging of Freshly Excised Human Breast Tumors. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 13–14. [Google Scholar] [CrossRef]
- Chernomyrdin, N.; Zhelnov, V.; Kucheryavenko, A.; Dolganova, I.; Katyba, G.; Karasik, V.; Reshetov, I.; Zaytsev, K. Numerical analysis and experimental study of terahertz solid immersion microscopy. Opt. Eng. 2019, 59, 61605. [Google Scholar] [CrossRef]
- Bao, C.; Fitzgerald, A.J.; Fan, S.; Wallace, V.P. Concentration analysis of breast tissue phantoms with terahertz spectroscopy. Biomed. Opt. Express 2018, 9, 1334. [Google Scholar]
- Vohra, N.; Bowman, T.; Diaz, P.M.; Rajaram, N.; Bailey, K.; El-Shenawee, M. Pulsed terahertz reflection imaging of tumors in a spontaneous model of breast cancer. Biomed. Phys. Eng. Express 2018, 4, 065025. [Google Scholar] [CrossRef]
- Okada, K.; Serita, K.; Zang, Z.; Murakami, H.; Kawayama, I.; Cassar, Q.; Macgrogan, G.; Guillet, J.P.; Mounaix, P.; Tonouchi, M. Scanning laser terahertz near-field reflection imaging system. Appl. Phys. Express 2019, 12, 122005. [Google Scholar] [CrossRef]
- Bowman, T.; Vohra, N.; Bailey, K.; El-Shenawee, M. Terahertz tomographic imaging of freshly excised human breast tissues. J. Med. Imaging 2019, 6, 023501. [Google Scholar]
- Serita, K.; Matsuda, E.; Okada, K.; Murakami, H.; Kawayama, I.; Tonouchi, M. Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms. APL Photonics 2018, 3, 051603. [Google Scholar] [CrossRef] [Green Version]
- Balbekin, N.S.; Cassar, Q.; Smolyanskaya, O.A.; Macgrogan, G.; Petrov, N.V. The terahertz pulse time-domain holography method for phase imaging of breast tissue sample. In Proceedings of the Digital Holography and Three-Dimensional Imaging, Bordeaux, France, 19–23 May 2019; p. Th4B.6. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Z.; Tang, M.; Wang, D.; Wang, H.; Yan, S.; Wei, D.; Cui, H.-L. Terahertz spectroscopic signatures of microcystin aptamer solution probed with a microfluidic chip. Sensors 2019, 19, 534. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Son, J.H. Machine learning techniques for THz imaging and time-domain spectroscopy. Sensors 2021, 21, 1186. [Google Scholar] [CrossRef]
- Zhang, R.; He, Y.Z.; Liu, K.; Zhang, L.L.; Zhang, S.J.; Pickwell-MacPherson, E.; Zhao, Y.J.; Cunlin Zhang, C.L. Composite multiscale entropy analysis of reflective terahertz signals for biological tissues. Opt. Express 2017, 25, 23669–23676. [Google Scholar] [CrossRef]
- Huang, P.J.; Cao, Y.Q.; Chen, J.N.; Ge, W.T.; Hou, D.B.; Zhang, G.X. Analysis and inspection techniques for mouse liver injury based on terahertz spectroscopy. Opt. Express 2019, 27, 26014–26026. [Google Scholar] [CrossRef]
- Yin, X.X.; Hadjiloucas, S.; Zhang, Y.; Su, M.Y.; Miao, Y.; Abbott, D. Pattern identification of biomedical images with time series: Contrasting THz pulse imaging with DCE-MRIs. Artif. Intell. Med. 2016, 67, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Guneser, M. An artificial intelligence solution to extract the dielectric properties of materials at sub-thz frequencies. IET Sci. Meas. Technol. 2019, 13, 523–528. [Google Scholar] [CrossRef]
- Murate, K.; Kanai, H.; Kawase, K. Application of machine learning to terahertz spectroscopic imaging of reagents hidden by thick shielding materials. IEEE Trans. Terahertz Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Liao, D.; Chan, K.F.; Chan, C.H.; Zhang, Q.; Wang, H.G. All-optical diffractive neural networked terahertz hologram. Opt. Lett. 2020, 45, 2906–2909. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, A.J.; Pinder, S.; Purushotham, A.D.; O’Kelly, P.; Ashworth, P.C.; Wallace, V.P. Classification of terahertz-pulsed imaging data from excised breast tissue. J. Biomed. Opt. 2012, 17, 016005. [Google Scholar] [CrossRef]
- Qi, N.; Zhang, Z.Y.; Xiang, Y.H.; Yang, Y.P.; Liang, X.; Harrington, P.B. Terahertz time-domain spectroscopy combined with support vector machines and partial least squares-discriminant analysis applied for the diagnosis of cervical carcinoma. Anal. Methods 2015, 7, 2333–2338. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Chen, T.; Liu, J. Discrimination of traditional herbal medicines based on terahertz spectroscopy. Optik 2017, 138, 95–102. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, R.; Ling, Y.; She, R.; Tang, H. Automatic recognition of breast cancer based on terahertz spectroscopy with wavelet packet transform and machine learning. Biomed. Opt. Express 2020, 11, 971–981. [Google Scholar] [CrossRef]
- Cassar, Q.; Caravera, S.; MacGrogan, G.; Bücher, T.; Hillger, P.; Pfeiffer, U.; Zimmer, T.; Guillet, J.P.; Mounaix, P. Terahertz refractive index-based morphological dilation for breast carcinoma delineation. Sci. Rep. 2021, 11, 6457. [Google Scholar] [CrossRef] [PubMed]
Parameter | CW THz Imaging System | TPI System |
---|---|---|
Cost | USD 50,000–150,000 | USD 300,000–1,000,000 |
System complexity | Data | Data |
Data complexity | Low | High |
Weight | About 2 kg | About 300 kg |
Information | Transmitted energy | Magnitude information; Phase information; Shape of pulse; Transmission time; Absorption spectrum; Depth |
Speed | 0.005 s per point 1 mm step size | 20–0.05 s per waveform |
CW THz Radiation | Pulsed THz Radiation | ||
---|---|---|---|
Generation approach | Medium | Generation approach | Medium |
Photomixing | Power cable switch | Transient photoconductive switching | PCAs |
Difference frequency generation using parametric oscillation | Nonlinear crystal | OR | Dielectrics, semiconductors, organic materials |
Rotational transitions | Far-infrared gas lasers | Emission from a periodically undulated electron beam | Electron accelerators |
Streaming motion and population inversion | Semiconductor laser | Surge current | Semiconductor |
Frequency multiplication of microwaves | Schottky barrier diode | Tunneling of electron wave packet | Quantum semiconductor structures |
Transitions in superlattice | Quantum cascade lasers | Coherent longitudinal optical phonons | Semiconductors, semimetals, superconductors |
Electron interactive with a traveling electromagnetic wave | Backward wave oscillator | Optically short-circuiting the switch | High-temperature superconductor bridge |
Relativistic electron interaction with transverse magnetic field | Free-electron lasers | Nonlinear transmission line | Electronic circuits consisting of NLTL |
Year | Frequency | THz System | Target | Results |
---|---|---|---|---|
Berry et al., 2003 [66] | 0.5–2.5 THz | TPI system | Various human tissues | Observed significant differences between broadband refractive indices of several tissues |
Wallace et al., 2004 [31] | 0.1–3.0 THz | TPI scanner (Teraview Ltd., Cambridge, UK) | BCC and healthy tissue | Could identify the extent of BCC in vivo and delineate tumor margins |
Fitzgerald et al., 2006 [32] | 0.1–3.0 THz | TPI scanner (Teraview Ltd., Cambridge, UK) | Freshly excised human breast tissues | Could depict invasive breast carcinoma and ductal carcinoma |
Ashworth et al., 2009 [33] | 0.15–2.0 THz | A portable THz pulsed transmission spectrometer | Freshly excised human breast specimens | THz pulsed spectroscopy and TPI could distinguish healthy adipose breast tissue, healthy fibrous breast tissue, and breast cancer |
Chen et al., 2011 [67] | 320 GHz | CW THz near-field microscopy transmission imaging | Frozen sliced breast tumors | Breast tumor could be distinguished from normal tissue without H&E staining with a resolution of 240 μm |
Chen et al., 2011 [68] | 108 GHz | Fiber-scanning transmission THz imaging | Subcutaneous xenograft mouse | Detection limit for tumor size reached 0.05 mm3 |
Joseph et al., 2011 [69] | 1.39 and 1.63 THz | CW THz transmission imaging | BCC | Observed good contrast between cancer and normal tissues with a spatial resolution of 390 μm at 1.4 THz and 490 μm at 1.6 THz |
Peter et al., 2013 [70] | 1.89 THz | CW THz imaging mode | Human breast cancer tissue | Observed absolute refractive index values of samples |
Bowman et al., 2015 [71] | 0.1–4.0 THz | TPS Spectra 3000 model | Paraffin-made breast phantoms | Could detect heterogeneous sample with a thickness of 10 μm |
Bowman et al., 2016 [34] | 0.1–4.0 THz | TPS Spectra 3000 system | Excised breast carcinomas | Provided higher resolution and more apparent margins between cancerous and fibro, cancerous and fat, fibro and fat |
Bowman et. al., 2017 [35] | 0.1–4.0 THz | TPS Spectra 3000 system | IDC and lobular carcinoma embedded in paraffin blocks | Tumor detection is accurate to depths over 1 mm. |
Bowman et al., 2018 [72] | 0.5–1.0 THz | THz reflection mode | Freshly excised breast tumors | Achieved good agreement between THz and pathology images |
Grootendorst et al., 2017 [37] | 0.1–1.8 THz | TPI handheld probe system (Teraview Ltd., Cambridge, UK) | Freshly excised breast cancer samples | Could discriminate breast cancer from benign tissue with an encouraging degree of accuracy |
Chernomyred et al., 2018 [73] | 10.6 THz | CW THz SI microscopy reflectivity imaging system | Human breast specimen | Observed a fragment of the stroma of breast ex vivo |
Cassar et al., 2018 [36] | 300–600 GHz | TPI and spectroscopy | Freshly excised murine xenograft breast cancer tumors | Cancerous identification accuracy of 80% |
Bao et al., 2018 [74] | 0.06–4.0 THz | TeraPulse 4000 system (Teraview Ltd., Cambridge, UK) | Freshly excised breast tissue | Spatial resolution reached 1 mm |
Vohra et al., 2018 [75] | 0.1–4.0 THz | TPI system with a reflection mode (Teraview Ltd., Cambridge, UK) | Freshly excised and formalin/paraffin-fixed breast tumor tissues from a mouse model | Cancerous areas exhibited the highest reflection and agreed with the pathology results |
Okada et al., 2019 [76] | ~~ | A scanning laser THz near-field reflection imaging system | Paraffin-embedded human breast | Spatial resolution reached 20 μm |
Bowman et al., 2019 [77] | 0.5–1.0 THz | TPS Spectra 3000 pulsed THz imaging and spectroscopy system (Teraview Ltd., Cambridge, UK) | Freshly excised breast cancer tumors | Cancerous areas exhibited higher absorption coefficients and refractive indexes than normal tissues, and the resolution reached 200 μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L. Terahertz Imaging for Breast Cancer Detection. Sensors 2021, 21, 6465. https://doi.org/10.3390/s21196465
Wang L. Terahertz Imaging for Breast Cancer Detection. Sensors. 2021; 21(19):6465. https://doi.org/10.3390/s21196465
Chicago/Turabian StyleWang, Lulu. 2021. "Terahertz Imaging for Breast Cancer Detection" Sensors 21, no. 19: 6465. https://doi.org/10.3390/s21196465