Towards a Singing Voice Multi-Sensor Analysis Tool: System Design, and Assessment Based on Vocal Breathiness
Abstract
:1. Introduction
1.1. Singing Voice Acoustic Analysis
1.2. Multi-Sensor Singing Voice Assessment
1.3. Related Work
2. Materials and Methods
2.1. Breathing System Sensors
2.2. Phonation
2.3. Vocal Output
2.4. Connections
2.5. Software and Sensor Signal Recording
2.6. Ambient and Hardware Noise
2.7. Experiment Participants
2.8. Experimental Protocol
3. Analysis
3.1. Data Handling and Analysis Parameters
3.2. Perceptual Evaluation
3.3. Pitch Detection in Microphone and EGG Signals
3.4. CPPS of the CM Signal
3.5. OQ of the EGG Signals
3.6. ABI of the Microphone Signals
3.7. Respiration
3.8. Phonation Duration
4. Results
4.1. Quantitative Analysis Results
4.2. Respiration
4.3. Breathiness Effect on Phonation Duration
5. Discussion
5.1. System Evaluation
5.2. Breathiness
5.3. Fundamental Frequency Estimation
5.4. Respiration
5.5. Study Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pöhlmann, E. Ancient Music in Antiquity and Beyond: Collected Essays (2009–2019); Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2020; p. 306. [Google Scholar]
- Pestana, P.M.; Vaz-Freitas, S.; Manso, M.C. Trends in Singing Voice Research: An Innovative Approach. J. Voice 2019, 33, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Kob, M.; Henrich, N.; Herzel, H.; Howard, D.; Tokuda, I.; Wolfe, J. Analysing and Understanding the Singing Voice: Recent Progress and Open Questions. Curr. Bioinform. 2011, 6, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Kreiman, J.; Lee, Y.; Garellek, M.; Samlan, R.; Gerratt, B.R. Validating a psychoacoustic model of voice quality. J. Acoust. Soc. Am. 2021, 149, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Samlan, R.A.; Story, B.H.; Bunton, K. Relation of perceived breathiness to laryngeal kinematics and acoustic measures based on computational modeling. J. Speech Lang. Hear. Res. 2014, 56, 1209–1223. [Google Scholar] [CrossRef]
- Sundberg, J. The Science of the Singing Voice; Northern Illinois University Press: DeKalb, IL, USA, 1987; p. 216. [Google Scholar]
- Titze, I.R. Nonlinear source-filter coupling in phonation: Theory. J. Acoust. Soc. Am. 2008, 123, 2733–2749. [Google Scholar] [CrossRef] [Green Version]
- Kob, M. Singing voice modeling as we know it today. Acta Acust. United Acust. 2004, 90, 649–661. [Google Scholar]
- Muda, L.; Begam, M.; Elamvazuthi, I. Voice Recognition Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques. J. Comput. 2010, 2, 138–143. [Google Scholar]
- Angelakis, E.; Andreopoulou, A.; Georgaki, A. Multisensory biofeedback: Promoting the recessive somatosensory control in operatic singing pedagogy. Biomed. Signal Process. Control. 2021, 66, 102400. [Google Scholar] [CrossRef]
- Boersma, P.; Weenink, D. Praat: Doing Phonetics by Computer [Computer Program]; University of Amsterdam: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Andreopoulou, A.; Kotsani, N.; Dedousis, G.; Georgaki, A. Evaluating the vocal characteristics of elementary school students: Basic assessment tools and methodology. In Proceedings of the Interaction Design and Children, IDC 2021, Athens, Greece, 24–30 June 2021; pp. 216–223. [Google Scholar] [CrossRef]
- Jang, S.J.; Choi, S.H.; Kim, H.M.; Choi, H.S.; Yoon, Y.R. Evaluation of Performance of Several Established Pitch Detection Algorithms in Pathological Voices. In Proceedings of the 29th Annual International Conference of the IEEE EMBS, Lyon, France, 22–26 August 2007; pp. 620–623. [Google Scholar]
- Lopes, L.W.; Barbosa Lima, I.L.; Alves Almeida, L.N.; Cavalcante, D.P.; De Almeida, A.A.F. Severity of voice disorders in children: Correlations between perceptual and acoustic data. J. Voice 2012, 26, 819.e7–819.e12. [Google Scholar] [CrossRef]
- Oliveira, R.C.; Teixeira, L.C.; Gama, A.C.C.; de Medeiros, A.M. Auditory-perceptive, acoustic and vocal self-perception analyses in children. J. Soc. Bras. Fonoaudiol. 2011, 23, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Eddins, D.A.; Anand, S.; Camacho, A.; Shrivastav, R. Modeling of Breathy Voice Quality Using Pitch-strength Estimates. J. Voice 2016, 30, 774.e1–774.e7. [Google Scholar] [CrossRef] [Green Version]
- Glottal. Available online: http://www.glottal.com/PhaseComp.html (accessed on 28 August 2021).
- VoceVista. VoceVista: Software and Hardware for Singers; VoceVista: Eugene, OR, USA, 2009. [Google Scholar]
- Shue, Y.L.; Keating, P.; Vicenik, C.; Kristine, Y. VoiceSause: A Program for Voice Analysis. In Proceedings of the 17th International Congress of Phonetic Sciences, Hong Kong, China, 17–21 August 2011; Volume 3, pp. 1846–1849. [Google Scholar]
- Tehrani, H. EGGWorks: A Program for Automated Analysis of EGG Signals. 2009. Available online: https://appsobabble.com/functions/EGGWorks.aspx (accessed on 28 August 2021).
- Watson, P.J.; Hixon, T.J. Respiratory kinematics in classical (opera) singers. J. Speech Hear. Res. 1985, 28, 104–122. [Google Scholar] [CrossRef] [PubMed]
- Salomoni, S.; Van Den Hoorn, W.; Hodges, P. Breathing and singing: Objective characterization of breathing patterns in classical singers. PLoS ONE 2016, 11, e0155084. [Google Scholar] [CrossRef]
- Castellana, A.; Leocata, I.; Carullo, A.; Astolfi, A. Singing voice quality assessment in professional singers using microphones and contact sensors. In Proceedings of the Euronoise 2018—Conference Proceedings, Heraklion, Greece, 27–31 May 2018; pp. 1849–1854. [Google Scholar]
- European Commission. Saving our Cultural Heritage; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Chawah, P.; Al Kork, S.K.; Fux, T.; Adda-Decker, M.; Amelot, A.; Audibert, N.; Denby, B.; Dreyfus, G.; Jaumard-Hakoun, A.; Pillot-Loiseau, C.; et al. An educational platform to capture, visualize and analyze rare singing. In Proceedings of the Annual Conference of the International Speech Communication Association, Singapore, 14–18 September 2014; pp. 2128–2129. [Google Scholar]
- Griffin, B.; Woo, P.; Colton, R.; Casper, J.; Brewer, D. Physiological characteristics of the supported singing voice. A preliminary study. J. Voice 1995, 9, 45–56. [Google Scholar] [CrossRef]
- Cortés, J.P.; Espinoza, V.M.; Ghassemi, M.; Mehta, D.D.; Van Stan, J.H.; Hillman, R.E.; Guttag, J.V.; Zañartu, M. Ambulatory assessment of phonotraumatic vocal hyperfunction using glottal airflow measures estimated from neck-surface acceleration. PLoS ONE 2018, 13, e209017. [Google Scholar] [CrossRef] [Green Version]
- Marks, K.L.; Lin, J.Z.; Fox, A.B.; Toles, L.E.; Mehta, D.D. Impact of Nonmodal Phonation on Estimates of Subglottal Pressure From Neck-Surface Acceleration in Healthy Speakers. J. Speech Lang. Hear. Res. 2019, 62, 3339–3358. [Google Scholar] [CrossRef] [PubMed]
- Toles, L.E.; Ortiz, A.J.; Marks, K.L.; Mehta, D.D.; Van Stan, J.H.; Hillman, R.E. Amount and Characteristics of Speaking and Singing Voice Use in Vocally Healthy Female College Student Singers During a Typical Week. J. Voice 2020. [Google Scholar] [CrossRef]
- Toles, L.E.; Ortiz, A.J.; Marks, K.L.; Burns, J.A.; Hron, T.; Stan, J.H.V.; Mehta, D.D.; Hillman, R.E. Differences Between Female Singers With Phonotrauma and Vocally Healthy Matched Controls in Singing and Speaking Voice Use During 1 Week of Ambulatory Monitoring. Am. J. Speech Lang. Pathol. 2021, 30, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.J.; Toles, L.E.; Marks, K.L.; Capobianco, S.; Mehta, D.D.; Hillman, R.E.; Van Stan, J.H. Automatic speech and singing classification in ambulatory recordings for normal and disordered voices. J. Acoust. Soc. Am. 2019, 146, EL22–EL27. [Google Scholar] [CrossRef] [PubMed]
- Aaen, M.; McGlashan, J.; Thu, K.T.; Sadolin, C. Assessing and Quantifying Air Added to the Voice by Means of Laryngostroboscopic Imaging, EGG, and Acoustics in Vocally Trained Subjects. J. Voice 2021, 35, 326.e1–326.e11. [Google Scholar] [CrossRef] [PubMed]
- Ternström, S.; D’Amario, S.; Selamtzis, A. Effects of the Lung Volume on the Electroglottographic Waveform in Trained Female Singers. J. Voice 2020, 34, 485-e1. [Google Scholar] [CrossRef] [Green Version]
- Scherer, R.C.; Titze, I.R. The Abduction Quotient Related to Vocal Quality. J. Voice 1987, 1, 246–251. [Google Scholar] [CrossRef]
- Latoszek, B.B.V.; Maryn, Y.; Gerrits, E.; De Bodt, M. The Acoustic Breathiness Index (ABI): A Multivariate Acoustic Model for Breathiness. J. Voice 2017, 31, 511.e11–511.e27. [Google Scholar] [CrossRef]
- Childers, D.G.; Lee, C.K. Vocal quality factors: Analysis, synthesis, and perception. J. Acoust. Soc. Am. 1991, 90, 2394–2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempster, G.B.; Gerratt, B.R.; Abbott, K.V.; Barkmeier-Kraemer, J.; Hillman, R.E. Consensus auditory-perceptual evaluation of voice: Development of a standardized clinical protocol. Am. J. Speech Lang. Pathol. 2009, 18, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Hillenbrand, J.; Houde, R.A. Acoustic correlates of breathy vocal quality: Dysphonic voices and continuous speech. J. Speech Lang. Hear. Res. 1996, 39, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Fritzell, B.; Hammarberg, B.; Gauffin, J.; Karlsson, I.; Sundberg, J. Breathiness and insufficient vocal fold closure. J. Phon. 1986, 14, 549–553. [Google Scholar] [CrossRef]
- Latoszek, B.B.v.; Kim, G.H.; Delgado Hernández, J.; Hosokawa, K.; Englert, M.; Neumann, K.; Hetjens, S. The validity of the Acoustic Breathiness Index in the evaluation of breathy voice quality: A Meta-Analysis. Clin. Otolaryngol. 2021, 46, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Yu, M. Vocal Exercises for Reducing Vocal Damages Caused. J. Korean Soc. Laryngol. Phoniatr. Logop. 2017, 28, 14–16. [Google Scholar] [CrossRef]
- Edgerton, M.E. The 21st-Century Voice: Contemporary and Traditional Extra-Normal Voice, 2nd ed.; Scarecrow Press: Lanham, MD, USA, 2015; p. 230. [Google Scholar]
- Graham, E.; Angadi, V.; Sloggy, J.; Stemple, J. Contribution of glottic insufficiency to perceived Breathiness in classically trained singers. Med. Probl. Perform. Artist. 2016, 31, 179–184. [Google Scholar] [CrossRef]
- Shrivastav, R.; Eddins, D.A.; Anand, S. Pitch strength of normal and dysphonic voices. J. Acoust. Soc. Am. 2012, 131, 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Pongweni, A.J. An acoustic study of the qualitative and pitch effect of breathy-voice on Shona vowels. J. Phon. 1983, 11, 129–138. [Google Scholar] [CrossRef]
- Hartl, D.M.; Hans, S.; Vaissière, J.; Brasnu, D.F. Objective acoustic and aerodynamic measures of breathiness in paralytic dysphonia. Eur. Arch. Oto-Rhino-Laryngol. 2003, 260, 175–182. [Google Scholar] [CrossRef]
- Shrivastav, R.; Sapienza, C.M. Objective measures of breathy voice quality obtained using an auditory model. J. Acoust. Soc. Am. 2003, 114, 2217–2224. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.P.; Oliveira, C.; Lopes, C. Vocal Acoustic Analysis—Jitter, Shimmer and HNR Parameters. Procedia Technol. 2013, 9, 1112–1122. [Google Scholar] [CrossRef] [Green Version]
- Fraile, R.; Godino-Llorente, J.I. Cepstral peak prominence: A comprehensive analysis. Biomed. Signal Process. Control. 2014, 14, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Borsky, M.; Mehta, D.D.; Gudjohnsen, J.P.; Gudnason, J. Classification of voice modality using electroglottogramwave forms. In Proceedings of the Annual Conference of the International Speech Communication Association, San Francisco, CA, USA, 8–12 September 2016. [Google Scholar] [CrossRef] [Green Version]
- Kadiri, S.R.; Yegnanarayana, B. Breathy to tense voice discrimination using zero-time windowing cepstral coefficients (ZTWCCs). In Proceedings of the Annual Conference of the International Speech Communication Association, Hyderabad, India, 2–6 September 2018; pp. 232–236. [Google Scholar] [CrossRef] [Green Version]
- Tylečková, L.; Skarnitzl, R. The mapping of voice parameters in connected speech of healthy Common Czech male speakers. Akust. Listy 2019, 25, 10–18. [Google Scholar]
- Murton, O.; Hillman, R.; Mehta, D. Cepstral peak prominence values for clinical voice evaluation. Am. J. Speech-Lang. Pathol. 2020, 29, 1596–1607. [Google Scholar] [CrossRef] [PubMed]
- Klatl, D.H.; Klati, L.C. Analysis, synthesis, and perception of voice quality variations among female and male talkers. J. Acoust. Soc. Am. 1990, 87, 820–857. [Google Scholar] [CrossRef] [Green Version]
- BIOPAC. Product Sheet—SS5LB Respiratory Effort Transducer; BIOPAC Systems Inc.: Goleta, CA, USA, 2018. [Google Scholar]
- Herbst, C.T. Electroglottography—An Update. J. Voice 2020, 34, 503–526. [Google Scholar] [CrossRef]
- Rothenberg, M. A multichannel electroglottograph. J. Voice 1992, 6, 36–43. [Google Scholar] [CrossRef]
- Herbst, C.; Ternström, S. A comparison of different methods to measure the EGG contact quotient. Logop. Phoniatr. Vocol. 2006, 31, 126–138. [Google Scholar] [CrossRef]
- Titze, I.R. Interpretation of the electroglottographic signal. J. Voice 1990, 4, 1–9. [Google Scholar] [CrossRef]
- Michaud, A. Mode d’emploi de l’électroglottographe EG2-PC du Laboratoire de Phonétique et Phonologie. 2005. Available online: http://voiceresearch.free.fr/egg/mode-emploi-EGG-LPP.pdf (accessed on 28 November 2021).
- Deliyski, D.D.; Shaw, H.S.; Evans, M.K. Adverse effects of environmental noise on acoustic voice quality measurements. J. Voice 2005, 19, 15–28. [Google Scholar] [CrossRef]
- Deliyski, D.D.; Shaw, H.S.; Evans, M.K.; Vesselinov, R. Regression tree approach to studying factors influencing acoustic voice analysis. Folia Phoniatr. Logop. 2006, 58, 274–288. [Google Scholar] [CrossRef] [PubMed]
- Massaroni, C.; Nicolò, A.; Presti, D.L.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-based methods for measuring respiratory rate. Sensors 2019, 19, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wlodarczak, M. RespInPeace: Toolkit for Processing Respiratory Belt Data. In Proceedings of the FONETIK 2019 Stockholm, Stockholm, Sweden, 10–12 June 2019; pp. 115–118. [Google Scholar]
- Zarate, J.M. The neural control of singing. Front. Hum. Neurosci. 2013, 7, 237. [Google Scholar] [CrossRef] [Green Version]
- Kleber, B.; Friberg, A.; Zeitouni, A.; Zatorre, R. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. NeuroImage 2017, 147, 97–110. [Google Scholar] [CrossRef]
- Shaabana, A.L.A.; Zheng, R. CRONOS: A Post-hoc Data Driven Multi-Sensor. ACM Trans. Sens. Netw. (TOSN) 2019, 15, 1–20. [Google Scholar] [CrossRef]
- Stoller, D.; Dixon, S. Analysis and classification of phonation modes in singing. In Proceedings of the 17th International Society for Music Information Retrieval Conference, ISMIR 2016, New York, NY, USA, 7–11 August 2016; pp. 80–86. [Google Scholar]
- Kotsani, N. Singing-Voice-Multi-Sensor-Analysis-Tool (Version v1.0). 2021. Available online: https://zenodo.org/record/5732933#.YaN7PS0RppQ (accessed on 28 November 2021).
- Henrich, N.; d’Alessandro, C.; Doval, B.; Castellengo, M. On the use of the derivative of electroglottographic signals for characterization of nonpathological phonation. J. Acoust. Soc. Am. 2004, 115, 1321–1332. [Google Scholar] [CrossRef] [Green Version]
- Howard, D.M. Variation of Electrolaryngographically Derived Closed Quotient for Trained and Untrained Adult Female Singers. J. Voice 1995, 9, 163–172. [Google Scholar] [CrossRef]
- Sofranko, J.L.; Prosek, R.A. The effect of experience on classification of voice quality. J. Voice 2012, 26, 299–303. [Google Scholar] [CrossRef]
- Lee, M.; Drinnan, M.; Carding, P. The reliability and validity of patient self-rating of their own voice quality. Clin. Otolaryngol. 2005, 30, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.N.; McInnes, F.R.; Jack, M.A. On the influence of laryngeal pathologies on acoustic and electroglottographic jitter measures. J. Acoust. Soc. Am. 2002, 111, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Jadoul, Y.; Thompson, B.; de Boer, B. Introducing Parselmouth: A Python interface to Praat. J. Phon. 2018, 71, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Boersma, P.; Van Heuven, V. Speak and unSpeak with PRAAT RAAT. Available online: https://www.fon.hum.uva.nl/paul/papers/speakUnspeakPraat_glot2001.pdf (accessed on 28 November 2021).
- Watts, C.R.; Awan, S.N.; Maryn, Y. A Comparison of Cepstral Peak Prominence Measures From Two Acoustic Analysis Programs. J. Voice 2017, 31, 1–387. [Google Scholar] [CrossRef]
- Maryn, Y.; De Bodt, M.; Barsties, B.; Roy, N. The value of the Acoustic Voice Quality Index as a measure of dysphonia severity in subjects speaking different languages. Eur. Arch. Oto-Rhino-Laryngol. 2014, 271, 1609–1619. [Google Scholar] [CrossRef]
- Maryn, Y. Praat-Script-Avqi-v0203. Available online: https://www.vvl.be/documenten-en-paginas/praat-script-avqi-v0203 (accessed on 28 November 2021).
- GitHub. Kirbyj/Praatdet: Praat-Based Tools for EGG Analysis; GitHub: San Francisco, CA, USA, 2020. [Google Scholar]
- Coleman, R.F. Comparison of microphone and neck-mounted accelerometer monitoring of the performing voice. J. Voice 1988, 2, 200–205. [Google Scholar] [CrossRef]
- Mehta, D.D.; Van Stan, J.H.; Hillman, R.E. Relationships between vocal function measures derived from an acoustic microphone and a subglottal neck-surface accelerometer. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 659–668. [Google Scholar] [CrossRef]
- Sorenson, D.N. A fundamental frequency investigation of children ages 6–10 years old. J. Commun. Disord. 1989, 22, 115–123. [Google Scholar] [CrossRef]
- Sundberg, J. The Perception of Singing. In The Psychology of Music, 2nd ed.; Deutch, D., Ed.; Academic Press: Cambridge, MA, USA, 1999; Chapter 6; pp. 171–214. [Google Scholar] [CrossRef]
- Azure Kinect DK—Develop AI Models|Microsoft Azure. Available online: https://azure.microsoft.com/en-us/services/kinect-dk/#overview (accessed on 28 August 2021).
- Albert, J.A.; Owolabi, V.; Gebel, A.; Brahms, C.M.; Granacher, U.; Arnrich, B. Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: A pilot study. Sensors 2020, 20, 5104. [Google Scholar] [CrossRef] [PubMed]
- Tölgyessy, M.; Dekan, M.; Chovanec, L. Skeleton tracking accuracy and precision evaluation of Kinect V1, Kinect V2, and the azure kinect. Sensors 2021, 21, 413. [Google Scholar] [CrossRef] [PubMed]
BR | PD | MPD | CPPS | DOQ | HOQ | ABI |
---|---|---|---|---|---|---|
0 | −0.1197 | −0.1624 | 19.0021 | 0.4969 | 0.5285 | 0.1542 |
1 | −0.5997 | −0.6998 | 16.6308 | 0.5119 | 0.5483 | 1.4276 |
2 | −1.0749 | −1.1693 | 15.7304 | 0.5652 | 0.5778 | 2.0935 |
3 | −2.0878 | −2.1259 | 13.2119 | 0.6067 | 0.6225 | 3.8265 |
4 | −2.9783 | −2.9235 | 9.7419 | 0.6391 | 0.6473 | 6.1339 |
PD | MPD | CPPS | DOQ | HOQ | ABI | CDH | CDH + ABI | |
---|---|---|---|---|---|---|---|---|
r | −0.0606 | −0.0494 | −0.7655 | 0.5516 | 0.6423 | 0.8107 | 0.8308 | 0.8534 |
p | 0.1966 | 0.2927 | < | < | < | < | < | < |
PD | MPD | CPPS | DOQ | HOQ | ABI | CDH | CDH + ABI | |
---|---|---|---|---|---|---|---|---|
−0.1436 | −0.1427 | −0.7647 | 0.5494 | 0.6447 | 0.8279 | 0.8410 | 0.8700 | |
p | 0.0021 | 0.0023 | < | < | < | < | < | < |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelakis, E.; Kotsani, N.; Georgaki, A. Towards a Singing Voice Multi-Sensor Analysis Tool: System Design, and Assessment Based on Vocal Breathiness. Sensors 2021, 21, 8006. https://doi.org/10.3390/s21238006
Angelakis E, Kotsani N, Georgaki A. Towards a Singing Voice Multi-Sensor Analysis Tool: System Design, and Assessment Based on Vocal Breathiness. Sensors. 2021; 21(23):8006. https://doi.org/10.3390/s21238006
Chicago/Turabian StyleAngelakis, Evangelos, Natalia Kotsani, and Anastasia Georgaki. 2021. "Towards a Singing Voice Multi-Sensor Analysis Tool: System Design, and Assessment Based on Vocal Breathiness" Sensors 21, no. 23: 8006. https://doi.org/10.3390/s21238006
APA StyleAngelakis, E., Kotsani, N., & Georgaki, A. (2021). Towards a Singing Voice Multi-Sensor Analysis Tool: System Design, and Assessment Based on Vocal Breathiness. Sensors, 21(23), 8006. https://doi.org/10.3390/s21238006