Vision-Based Damage Detection for One-Fixed-End Structures Based on Aligned Marker Space and Decision Fusion
Abstract
:1. Introduction
- 1
- The AMS method allows us to use beam-based damage detection and localization methods to various non-beam configurations (cranes, curved beams, etc.)
- 2
- Decision fusion of various damage detection methods increases the reliability of the solution. The fusion can be performed both in the sub-method space and measurement space by aggregating results from different methods and from different measurements.
- 3
- It is possible to optimize meta-parameter values for the FF method based on beam data and then, with the help of the AMS, use it to detect damage in a new structure.
2. Aligned Marker Space
2.1. The Method
Algorithm 1: AMS transformation. |
|
2.2. FEM-Based Concept Validation
- A#1 Calculation of a vertical displacement difference as a function of marker position along horizontal axis (a standard approach).
- A#2 Calculation of the euclidean displacement difference as a function of marker number.
- A#3 Mapping the displacements using AMS.
3. Damage Detection Methods
3.1. Second Derivative Method
3.2. Line Segment Method
3.3. Line Difference Method
3.4. Wavelet Method
3.5. Field Fusion Method
4. Method Configuration
5. Simulation-Based Evaluation
6. Experimental Evaluation
6.1. Experimental Setup
6.2. Example of Results from One Experimental Case
6.3. Influence of the Various Experimental Conditions
6.3.1. Camera Influence
6.3.2. Influence of the Specimen
6.3.3. Influence of the Damage Location
6.4. Results Aggregation
7. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, L.; Song, D.; Liu, Z.; Xu, X.; Zheng, Z. Displacement identification by computer vision for condition monitoring of rail vehicle bearings. Sensors 2021, 21, 2100. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xue, Y.; He, C.; Zhao, Y. Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades. Energies 2022, 15, 5672. [Google Scholar] [CrossRef]
- Toscano, A.M.; Lato, M.R.; Fontanarosa, D.; De Giorgi, M.G. Optical Diagnostics for Solid Rocket Plumes Characterization: A Review. Energies 2022, 15, 1470. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, C.; Tang, X.; Wang, S.; Zhang, Z. A Review of Vision-Laser-Based Civil Infrastructure Inspection and Monitoring. Sensors 2022, 22, 5882. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Liang, Q.; Zhong, W.; Gao, X.; Cui, F. Homography-based measurement of bridge vibration using UAV and DIC method. Meas. J. Int. Meas. Confed. 2021, 170, 108683. [Google Scholar] [CrossRef]
- Sładek, J.; Ostrowska, K.; Kohut, P.; Holak, K.; Gąska, A.; Uhl, T. Development of a vision based deflection measurement system and its accuracy assessment. Meas. J. Int. Meas. Confed. 2013, 46, 1237–1249. [Google Scholar] [CrossRef]
- Hu, X.; Xie, Z.; Liu, F. Assessment of speckle pattern quality in digital image correlation from the perspective of mean bias error. Meas. J. Int. Meas. Confed. 2021, 173, 108618. [Google Scholar] [CrossRef]
- Atha, D.J.; Jahanshahi, M.R. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct. Health Monit. 2017, 17, 1110–1128. [Google Scholar] [CrossRef]
- Gauthier, J.F.; Whalen, T.M.; Liu, J. Experimental validation of the higher-order derivative discontinuity method for damage identification. Struct. Control Health Monit. 2008, 15, 143–161. [Google Scholar] [CrossRef]
- Li, H.; Huang, Y.; Ou, J.; Bao, Y. Fractal Dimension-Based Damage Detection Method for Beams with a Uniform Cross-Section. Comput. Aided Civ. Infrastruct. Eng. 2011, 26, 190–206. [Google Scholar] [CrossRef]
- Shi, J.; Xu, X.; Wang, J.; Li, G. Beam damage detection using computer vision technology. Nondestruct. Test. Eval. 2010, 25, 189–204. [Google Scholar] [CrossRef]
- RaghuPrasad, B.K.; Lakshmanan, N.; Gopalakrishnan, N.; Sathishkumar, K.; Sreekala, R. Damage identification of beam-like structures with contiguous and distributed damage. Struct. Control Health Monit. 2013, 20, 496–519. [Google Scholar] [CrossRef]
- Seyedpoor, S.; Yazdanpanah, O. An efficient indicator for structural damage localization using the change of strain energy based on static noisy data. Appl. Math. Model. 2014, 38, 2661–2672. [Google Scholar] [CrossRef]
- Guo, H.Y.; Li, Z.L. Structural Damage Detection Based on Strain Energy and Evidence Theory. Appl. Mech. Mater. 2011, 48, 1122–1125. [Google Scholar] [CrossRef]
- Spanos, P.D.; Failla, G.; Santini, A.; Pappatico, M. Damage detection in Euler–Bernoulli beams via spatial wavelet analysis. Struct. Control Health Monit. 2006, 13, 472–487. [Google Scholar] [CrossRef]
- Umesha, P.; Ravichandran, R.; Sivasubramanian, K. Crack Detection and Quantification in Beams Using Wavelets. Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 593–607. [Google Scholar] [CrossRef]
- Zhu, L.F.; Ke, L.L.; Zhu, X.Q.; Xiang, Y.; Wang, Y.S. Crack identification of functionally graded beams using continuous wavelet transform. Compos. Struct. 2019, 210, 473–485. [Google Scholar] [CrossRef]
- Loutridis, S.; Douka, E.; Trochidis, A. Crack identification in double-cracked beams using wavelet analysis. J. Sound Vib. 2004, 277, 1025–1039. [Google Scholar] [CrossRef]
- Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Chate, A. Multiple Damage Identification in Beam Structure Based on Wavelet Transform. Procedia Eng. 2017, 172, 426–432. [Google Scholar] [CrossRef]
- Ma, Q.; Solís, M.; Galvín, P. Wavelet analysis of static deflections for multiple damage identification in beams. Mech. Syst. Signal Process. 2021, 147, 107103. [Google Scholar] [CrossRef]
- Abdo, M.A.B. Parametric study of using only static response in structural damage detection. Eng. Struct. 2012, 34, 124–131. [Google Scholar] [CrossRef]
- Dworakowski, Z.; Kohut, P.; Gallina, A.; Holak, K.; Uhl, T. Vision-based algorithms for damage detection and localization in structural health monitoring. Struct. Control Health Monit. 2016, 23, 35–50. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, B. Structural damage localization and quantification using static test data. Struct. Health Monit. 2011, 10, 381–389. [Google Scholar] [CrossRef]
- Wang, X.; Hu, N.; Fukunaga, H.; Yao, Z. Structural damage identification using static test data and changes in frequencies. Eng. Struct. 2001, 23, 610–621. [Google Scholar] [CrossRef]
- Le, N.; Thambiratnam, D.; Nguyen, A.; Chan, T. A new method for locating and quantifying damage in beams from static deflection changes. Eng. Struct. 2019, 180, 779–792. [Google Scholar] [CrossRef]
- Bakhtiari-Nejad, F.; Rahai, A.; Esfandiari, A. A structural damage detection method using static noisy data. Eng. Struct. 2005, 27, 1784–1793. [Google Scholar] [CrossRef]
- Hensman, J.; Surace, C.; Gherlone, M. Detecting mode-shape discontinuities without differentiation—Examining a Gaussian process approach. J. Phys. Conf. Ser. 2011, 305, 012001. [Google Scholar] [CrossRef] [Green Version]
- OBrien, E.J.; Fitzgerald, P.C.; Malekjafarian, A.; Sevillano, E. Bridge damage detection using vehicle axle-force information. Eng. Struct. 2017, 153, 71–80. [Google Scholar] [CrossRef]
- Mousavi, M.; Holloway, D.; Olivier, J.; Gandomi, A.H. A Spline Method based on the Crack Induced Deflection for Bridge Damage Detection. Adv. Eng. Softw. 2020, 149, 102894. [Google Scholar] [CrossRef]
- Mousavi, M.; Holloway, D.; Olivier, J.; Gandomi, A.H. A baseline-free damage detection method using VBI incomplete measurement data. Measurement 2021, 174, 108957. [Google Scholar] [CrossRef]
Parameter Name | Parameter Value |
---|---|
Population size | 50 |
Generations | 50 |
Initial mutation step | 10% of draw range for each parameter |
Mutation step decrease | Linear from Initial value to 10% of the initial value, reset after |
each 10 generations | |
Succession method | Pareto front, but no more than 50% of population |
Elite succession | Yes, all individuals on front |
Diversity control | No |
Crossover | No |
No | Detection Error [%] | Location Error [%] | SDs | SDw | LSs | LSw | LDs | LDw | WVs | WVw |
---|---|---|---|---|---|---|---|---|---|---|
FF1 | 11.20 | 6.7 | 67.80 | 37.61 | 6.58 | 26.81 | 36.63 | 154.56 | 28.09 | 0.00 |
FF2 | 14.94 | 4.5 | 71.25 | 16.82 | 45.21 | 68.52 | 76.40 | 169.38 | 17.06 | 1.51 |
FF3 | 24.48 | 3.3 | 19.04 | 1.96 | 2.08 | 31.02 | 16.34 | 116.24 | 25.93 | 0.00 |
FFr | 24.48 | 3.3 | 35 | 40 | 350 | 40 | 0 | 0 | 0 | 0.00 |
Case Number | Camera Number | Damage Location | Specimen Number |
---|---|---|---|
C#1 | 1 | 1 | 1 |
C#2 | 2 | 1 | 1 |
C#3 | 1 | 2 | 1 |
C#4 | 2 | 2 | 1 |
C#5 | 1 | 2 | 2 |
C#6 | 2 | 2 | 2 |
C#7 | 1 | 1 | 2 |
C#8 | 2 | 1 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dworakowski, Z.; Zdziebko, P.; Dziedziech, K.; Holak, K. Vision-Based Damage Detection for One-Fixed-End Structures Based on Aligned Marker Space and Decision Fusion. Sensors 2022, 22, 9820. https://doi.org/10.3390/s22249820
Dworakowski Z, Zdziebko P, Dziedziech K, Holak K. Vision-Based Damage Detection for One-Fixed-End Structures Based on Aligned Marker Space and Decision Fusion. Sensors. 2022; 22(24):9820. https://doi.org/10.3390/s22249820
Chicago/Turabian StyleDworakowski, Ziemowit, Pawel Zdziebko, Kajetan Dziedziech, and Krzysztof Holak. 2022. "Vision-Based Damage Detection for One-Fixed-End Structures Based on Aligned Marker Space and Decision Fusion" Sensors 22, no. 24: 9820. https://doi.org/10.3390/s22249820
APA StyleDworakowski, Z., Zdziebko, P., Dziedziech, K., & Holak, K. (2022). Vision-Based Damage Detection for One-Fixed-End Structures Based on Aligned Marker Space and Decision Fusion. Sensors, 22(24), 9820. https://doi.org/10.3390/s22249820