Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades
Abstract
:1. Introduction
- Firstly, the types of common faults and defects of wind turbine blades are comprehensively summarized, and the main generation mechanisms of common faults and defects of the blades are deeply analyzed.
- Then, the principle and the latest research progress of the main damage-detection technologies, such as vision, ultrasound, thermal imaging, vibration, and acoustic emission, are comprehensively and deeply summarized.
- The advantages and limitations of each wind turbine blade damage-detection technology are summarized and analyzed.
- Finally, various blade damage-detection methods are compared, a future potential research direction for wind turbine blade damage-detection technology is put forward, and a conclusion is drawn.
2. Main Defect Types and Mechanism
2.1. Trailing Edge Cracking
2.2. Lightning Damage
2.3. Corrosion Contamination at Leading Edge
2.4. Icing
2.5. Delamination
2.6. Other Defects
3. Main Detection Methods
3.1. Strain Monitoring
3.1.1. General
3.1.2. Research Progress
3.1.3. Analysis of Advantages and Disadvantages
3.2. Visual Inspection
3.2.1. General
3.2.2. Research Progress
3.2.3. Analysis of Advantages and Disadvantages
3.3. Acoustic Emission
3.3.1. General
3.3.2. Research Progress
3.3.3. Advantages and Disadvantages Analysis
3.4. Thermal Imaging Monitoring
3.4.1. General
3.4.2. Research Progress
3.4.3. Analysis of Advantages and Disadvantages
3.5. Ultrasonic Testing
3.5.1. General
3.5.2. Research Progress
3.5.3. Analysis of Advantages and Disadvantages
3.6. Vibration Monitoring
3.6.1. General
3.6.2. Research Progress
3.6.3. Analysis of Advantages and Disadvantages
3.7. Acoustic Monitoring
3.7.1. General
3.7.2. Research Progress
3.7.3. Analysis of Advantages and Disadvantages
3.8. Other Case Study Methods
4. Comparison and Analysis
4.1. Comparison
4.2. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WTB | Wind turbine blade |
GFRP | Glass fiber-reinforced polymer |
CFRP | Carbon fiber-reinforced polymer |
AEP | Annual energy production |
FBG | Fiber Bragg grating |
POF | Plastic optical fiber |
FIF | Feature information fusion |
FOS | Fiber optical sensors |
DIC | Digital image correlation |
CNN | Convolutional neural network |
3D-DIC | Three-dimensional digital image correlation |
AE | Acoustic emission |
WPD | Wavelet packet decomposition |
TSA | Thermoelastic stress analysis camera |
STFT | Short-time Fourier transform |
TSA | Time synchronization analysis |
References
- Opeyemi, B.M. Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy. Energy 2021, 228, 120519. [Google Scholar] [CrossRef]
- Zhao, J.; Patwary, A.K.; Qayyum, A.; Alharthi, M.; Bashir, F.; Mohsin, M.; Hanif, I.; Abbas, Q. The determinants of renewable energy sources for the fueling of green and sustainable economy. Energy 2022, 238 Pt C, 122029. [Google Scholar] [CrossRef]
- Kreutz, M.; Alla, A.A.; Eisenstadt, A.; Freitag, M.; Thoben, K.-D. Ice Detection on Rotor Blades of Wind Turbines using RGB Images and Convolutional Neural Networks. Procedia CIRP 2020, 93, 1292–1297. [Google Scholar] [CrossRef]
- Sayed, E.T.; Wilberforce, T.; Elsaid, K.; Rabaia, M.K.H.; Abdelkareem, M.A.; Chae, K.-J.; Olabi, A. A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total Environ. 2020, 766, 144505. [Google Scholar] [CrossRef] [PubMed]
- Global Wind Report 2022—Global Wind Energy Council. Available online: https://www.nextias.com/current-affairs/13-04-2022/global-wind-report-2022-gwec (accessed on 5 July 2022).
- Liu, Q.; Sun, Y.; Wu, M. Decision-making methodologies in offshore wind power investments: A review. J. Clean. Prod. 2021, 295, 126459. [Google Scholar] [CrossRef]
- Zhao, Q.; Yuan, Y.; Sun, W.; Fan, X.; Fan, P.; Ma, Z. Reliability analysis of wind turbine blades based on non-Gaussian wind load impact competition failure model. Measurement 2020, 164, 107950. [Google Scholar] [CrossRef]
- Chou, J.-S.; Chiu, C.-K.; Huang, I.-K.; Chi, K.-N. Failure analysis of wind turbine blade under critical wind loads. Eng. Fail. Anal. 2013, 27, 99–118. [Google Scholar] [CrossRef]
- Du, Y.; Zhou, S.; Jing, X.; Peng, Y.; Wu, H.; Kwok, N. Damage detection techniques for wind turbine blades: A review. Mech. Syst. Signal Process. 2019, 141, 106445. [Google Scholar] [CrossRef]
- Allal, A.; Sahnoun, M.; Adjoudj, R.; Benslimane, S.M.; Mazar, M. Multi-agent based simulation-optimization of maintenance routing in offshore wind farms. Comput. Ind. Eng. 2021, 157, 107342. [Google Scholar] [CrossRef]
- Ruiz, M.; Mujica, L.E.; Alférez, S.; Acho, L.; Tutivén, C.; Vidal, Y.; Rodellar, J.; Pozo, F. Wind turbine fault detection and classification by means of image texture analysis. Mech. Syst. Signal Process. 2018, 107, 149–167. [Google Scholar] [CrossRef] [Green Version]
- Ataya, S.; Ahmed, M.M. Damages of wind turbine blade trailing edge: Forms, location, and root causes. Eng. Fail. Anal. 2013, 35, 480–488. [Google Scholar] [CrossRef]
- Cripps, D. The future of repair. Reinf. Plast. 2011, 55, 28–32. [Google Scholar] [CrossRef]
- Marin, J.C.; Barroso, A.; Paris, F.; Canas, J. Study of damage and repair of blades of a 300 kW wind turbine. Energy 2008, 33, 1068–1083. [Google Scholar] [CrossRef]
- Schaarup, J. (Ed.) Guidelines for Design of Wind Turbines, 2nd ed.; Risø National Laboratory: Roskilde, Denmark, 2002.
- Rachidi, F.; Rubinstein, M.; Montanya, J.; Bermúdez, J.L.; Sola, R.R.; Solà, G.; Korovkin, N. A Review of Current Issues in Lightning Protection of New-Generation Wind-Turbine Blades. IEEE Trans. Ind. Electron. 2008, 55, 2489–2496. [Google Scholar] [CrossRef]
- Montanyà, J. Lightning interaction and damages to wind turbines. In Proceedings of the V Russian Conference on Lightning Protection, Saint Petersburg, Russia, 17–19 May 2016; pp. 1–15. [Google Scholar]
- Garolera, A.C.; Madsen, S.F.; Nissim, M.; Myers, J.D.; Holboell, J. Lightning Damage to Wind Turbine Blades from Wind Farms in the U.S. IEEE Trans. Power Deliv. 2014, 31, 1043–1049. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, C.; Bian, X.; Lo, K.L.; Li, D. Numerical analysis of lightning attachment to wind turbine blade. Renew. Energy 2018, 116 Pt A, 584–593. [Google Scholar] [CrossRef]
- Rakov, V.A.; Uman, M.A. Lightning: Physics and Effects; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Uman, M.A. The Lightning Discharge; Academic Press: Orlando, FL, USA, 1987. [Google Scholar]
- Yan, J.; Li, Q.; Guo, Z.; Ma, Y.; Wang, G.; Zhang, L.; Yan, J.D. Puncture position on wind turbine blades and arc path evolution under lightning strikes. Mater. Des. 2017, 122, 197–205. [Google Scholar] [CrossRef]
- Madsen, S. Interaction between Electrical Discharges and Materials for Wind Turbine Blades—Particularly Related to Lightning Protection. Ph.D. Thesis, The Technical University of Denmark, Kongens Lyngby, Denmark, 2006. [Google Scholar]
- Han, W.; Kim, J.; Kim, B. Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines. Renew. Energy 2018, 115, 817–823. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Hasager, C.B.; Bak, C.; Tilg, A.-M.; Bech, J.I.; Rad, S.D.; Fæster, S. Leading edge erosion of wind turbine blades: Understanding, prevention and protection. Renew. Energy 2021, 169, 953–969. [Google Scholar] [CrossRef]
- Spruce, C.J. Power performance of active stall wind turbines with blade contamination. In Proceedings of the Conference Proceedings of EWEC, Athens, Greece, 27 February–2 March 2006. [Google Scholar]
- Corten, G.; Veldkamp, H. Insects can halve wind-turbine power. Nature 2001, 412, 41–42. [Google Scholar] [CrossRef]
- Mishnaevsky, L., Jr. Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: Overview of mechanisms and technical solutions. Wind Energy 2019, 22, 1636–1653. [Google Scholar] [CrossRef]
- Amirzadeh, B.; Louhghalam, A.; Raessi, M.; Tootkaboni, M. A computational framework for the analysis of rain-induced erosion in wind turbine blades, part I: Stochastic rain texture model and drop impact simulations. J. Wind Eng. Ind. Aerodyn. 2017, 163, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Pugh, K.; Rasool, G.; Stack, M.M. Stack Some Thoughts on Mapping Tribological Issues of Wind Turbine Blades Due to Effects of Onshore and Offshore Raindrop Erosion. J. Bio-Tribo-Corros. 2018, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Madi, E.; Pope, K.; Huang, W.; Iqbal, T. A review of integrating ice detection and mitigation for wind turbine blades. Renew. Sustain. Energy Rev. 2019, 103, 269–281. [Google Scholar] [CrossRef]
- Pérez, J.M.P.; Márquez, F.P.G.; Ruiz-Hernández, D. Economic viability analysis for icing blades detection in wind turbines. J. Clean. Prod. 2016, 135, 1150–1160. [Google Scholar] [CrossRef] [Green Version]
- ISO 12494-2001; Atmospheric Icing of Structures. ISO: Geneva, Switzerland, 2001.
- Bosch, S.; Peyke, G. Raum und Erneuerbare Energien—Anforderungen eines regenerativen Energiesystems an die Standortplanung. Z. Angew. Geogr. 2010, 34, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Technical Research Centre of Finland (VTT). Cold Climate Wind Energy Showing Huge Potential. Science Daily 2013. Available online: https://www.sciencedaily.com/releases/2013/05/130528091611.htm (accessed on 7 December 2017).
- PHaselbach, P.U.; Bitsche, R.D.; Branner, K. The effect of delaminations on local buckling in wind turbine blades. Renew. Energy 2016, 85, 295–305. [Google Scholar] [CrossRef]
- Toft, H.; Branner, K.; Berring, P.; Sørensen, J.D. Defect distribution and reliability assessment of wind turbine blades. Eng. Struct. 2011, 33, 171–180. [Google Scholar] [CrossRef]
- Zhou, H.; Dou, H.; Qin, L.; Chen, Y.; Ni, Y.-Q.; Ko, J. A review of full-scale structural testing of wind turbine blades. Renew. Sustain. Energy Rev. 2014, 33, 177–187. [Google Scholar] [CrossRef]
- Sierra-Pérez, J.; Torres-Arredondo, M.A.; Güemes, A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison. Compos. Struct. 2016, 135, 156–166. [Google Scholar] [CrossRef]
- Hoffmann, K. An Introduction to Measurements Using Strain Gages; Hottinger Baldwin Messtechnik: Darmstadt, Germany, 1989. [Google Scholar]
- Ltz, G.; Morey, W.W.; Glenn, W.H. Formation of Bragg gratings in optical fibers by a ransverse olographic method. Opt. Lett. 1989, 14, 823–825. [Google Scholar]
- Liu, Z.; Liu, X.; Zhu, S.P.; Zhu, P.; Liu, W.; Correia, J.A.; De Jesus, A.M. Reliability assessment of measurement accuracy for FBG sensors used in structural tests of the wind turbine blades based on strain transfer laws. Eng. Fail. Anal. 2020, 112, 104506. [Google Scholar] [CrossRef]
- Ye, X.W.; Su, Y.H.; Han, J.P. Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review. Sci. World J. 2014, 2014, 652329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, E.R.; Borum, K.K.; McGugan, M.; Thomsen, C.; Jensen, F.; Debel, C.; Sørensen, B. Full Scale Testing of Wind Turbine Blade to Failure-Flapwise Loading; Risø National Laboratory: Roskilde, Denmark, 2004.
- Takeda, N. Characterization of microscopic damage in composite laminates and real-time monitoring by embedded optical fiber sensors. Int. J. Fatigue 2002, 24, 281–289. [Google Scholar] [CrossRef]
- Wu, J.; Song, C.; Saleem, H.S.; Downey, A.; Laflamme, S. Network of flexible capacitive strain gauges for the reconstruction of surface strain. Meas. Sci. Technol. 2015, 26, 055103. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Yang, Z.; Chen, X.; Xie, Y. Damage detection based on static strain responses using FBG in a wind turbine blade. Sensors 2015, 15, 19992–20005. [Google Scholar] [CrossRef] [Green Version]
- Laflamme, S.; Cao, L.; Chatzi, E.; Ubertini, F. Damage detection and localization from dense network of strain sensors. Shock Vibr. 2016, 2016, 2562949. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Aihara, A.; Puntsagdash, G.; Kawaguchi, T.; Sakamoto, H.; Okuma, M. Feasibility study on a strain based deflection monitoring system for wind turbine blades. Mech. Syst. Signal Process. 2017, 82, 117–129. [Google Scholar] [CrossRef]
- Aihara, A.; Kawaguchi, T.; Miki, N.; Azami, T.; Sakamoto, H.; Okuma, M. A Vibration Estimation Method for Wind Turbine Blades. Exp. Mech. 2017, 57, 1213–1224. [Google Scholar] [CrossRef]
- Wen, B.; Tian, X.; Jiang, Z.; Li, Z.; Dong, X.; Peng, Z. Monitoring blade loads for a floating wind turbine in wave basin model tests using Fiber Bragg Grating sensors: A feasibility study. Mar. Struct. 2020, 71, 102729. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Rajan, G.; Semenova, Y.; Farrell, G. Farrell Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 2016, 16, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, T.-Y.; Shiao, S.-Y.; Liao, W.-I. Damage detection of rotating wind turbine blades using local flexibility method and long-gauge fiber Bragg grating sensors. Meas. Sci. Technol. 2018, 29, 015108. [Google Scholar] [CrossRef]
- Oh, K.Y.; Park, J.Y.; Lee, J.S.; Epureanu, B.I.; Lee, J.K. A novel method and its field tests for monitoring and diagnosing blade health for wind turbines. IEEE Trans. Instrum. Meas. 2015, 64, 1726–1733. [Google Scholar] [CrossRef]
- Sørensen, B.F.; Lading, L.; Sendrup, P.; McGugan, M.; Debel, C.P.; Kristensen, O.J.; Larsen, G.C.; Hansen, A.M.; Rheinländer, J.; Rusborg, J. Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades—A Preproject; Risø National Laboratory: Roskilde, Denmark, 2002.
- Niezrecki, C.; Avitabile, P.; Chen, J.; Sherwood, J.; Lundstrom, T.; Leblanc, B.; Hughes, S.; Desmond, M.; Beattie, A.; Rumsey, M.; et al. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing. Struct. Health Monit. 2014, 13, 629–643. [Google Scholar] [CrossRef]
- Rumsey, M.A.; Paquette, J.A. Structural Health Monitoring of Wind Turbine Blades; Sandia National Laboratories: Albuquerque, NM, USA, 2008.
- Downey, A.; Ubertini, F.; Laflamme, S. Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion. J. Wind Eng. Ind. Aerodyn. 2017, 168, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Andersen, P.B.; Henriksen, L.; Gaunaa, M.; Bak, C.; Buhl, T. Deformable trailing edge flaps for modern megawatt wind turbine controllers using strain gauge sensors. Wind Energy 2010, 13, 193–206. [Google Scholar] [CrossRef]
- Bezziccheri, M.; Castellini, P.; Evangelisti, P.; Santolini, C.; Paone, N. Measurement of mechanical loads in large wind turbines: Problems on calibration of strain gage bridges and analysis of uncertainty. Wind Energy 2017, 20, 1997–2010. [Google Scholar] [CrossRef]
- Bang, H.J.; Kim, H.I.; Kim, S.; Shin, H.; Lee, K.; Ahn, J. Three-dimensional deflection estimation of a composite blade using a modal approach based shape estimation algorithm with embedded sensor array. In European Wind Energy Association Conference and Exhibition; EWEA: Barcelona, Spain, 2014. [Google Scholar]
- Sampath, U.; Kim, H.; Kim, D.G.; Kim, Y.C.; Song, M. In-Situ cure monitoring of wind turbine blades by using fiber Bragg grating sensors and fresnel reflection measurement. Sensors 2015, 15, 18229–18238. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Park, T.; Han, K. Real-time monitoring of composite wind turbine blades using fiber Bragg grating sensors. Adv. Compos. Mater. 2011, 20, 39–51. [Google Scholar] [CrossRef]
- Schroeder, K.; Ecke, W.; Apitz, J.; Lembke, E.; Lenschow, G. Fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade. In Proceedings of the 17th International Conference on Optical Fibre Sensors, Bruges, Belgium, 23–27 May 2005; pp. 270–273. [Google Scholar]
- Kim, D.; Kim, H.; Sampath, U.; Song, M. A hybrid fiber-optic sensor system for condition monitoring of large scale wind turbine blades. In Proceedings of the Fifth Asia Pacific Optical Sensors Conference, Jeju Island, Korea, 20–22 May 2015; p. 96550N. [Google Scholar]
- Shihavuddin, A.S.M.; Chen, X.; Fedorov, V.; Nymark Christensen, A.; Andre Brogaard Riis, N.; Branner, K.; Bjorholm Dahl, A.; Reinhold Paulsen, R. Wind turbine surface damage detection by deep learning aided drone inspection analysis. Energies 2019, 12, 676. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.-Y.; Dong, C.-Y.; Zhou, P.; Zhu, M.-J.; Ren, J.-W.; Chen, X.-Y. Detecting Surface Defects of Wind Tubine Blades Using an Alexnet Deep Learning Algorithm. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2019, E102-A, 1817–1824. [Google Scholar] [CrossRef] [Green Version]
- Khadka, A.; Fick, B.; Afshar, A.; Tavakoli, M.; Baqersad, J. Non-contact vibration monitoring of rotating wind turbines using a semi-autonomous UAV. Mech. Syst. Signal Process. 2020, 138, 10644. [Google Scholar] [CrossRef]
- Reddy, A.; Indragandhi, V.; Ravi, L.; Subramaniyaswamy, V. Detection of Cracks and damage in wind turbine blades using artificial intelligence-based image analytics. Measurement 2019, 147, 106823. [Google Scholar] [CrossRef]
- Zhang, C.; Wen, C.; Liu, J. Mask-MRNet: A deep neural network for wind turbine blade fault detection. J. Renew. Sustain. Energy 2020, 12, 053302. [Google Scholar] [CrossRef]
- Xu, D.; Wen, C.; Liu, J. Wind turbine blade surface inspection based on deep learning and UAV-taken images. J. Renew. Sustain. Energy 2019, 11, 053305. [Google Scholar] [CrossRef]
- Ozbek, M.; Rixen, D.J.; Erne, O.; Sanow, G. Feasibility of monitoring large wind turbines using photogrammetry. Energy 2010, 35, 4802–4811. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z. Automatic Detection of Wind Turbine Blade Surface Cracks Based on UAV-Taken Images. IEEE Trans. Ind. Electron. 2017, 64, 7293–7303. [Google Scholar] [CrossRef]
- Rao, Y.; Xiang, B.J.; Huang, B.; Mao, S. Wind turbine blade inspection based on unmanned aerial vehicle (UAV) visual systems. In Proceedings of the 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 8–10 November 2019; pp. 708–713. [Google Scholar]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef]
- Johnson, J.T.; Hughes, S.; van Dam, J. A stereo-videogrammetry system for monitoring wind turbine blade surfaces during structural testing. ASME Early Career Tech. J. 2009, 8, 1–10. [Google Scholar]
- Yang, J.; Peng, C.; Xiao, J.; Zeng, J.; Yuan, Y. Application of videometric technique to deformation measurement for large-scale composite wind turbine blade. Appl. Energy 2012, 98, 292–300. [Google Scholar] [CrossRef]
- Zhang, D.; Watson, R.; Dobie, G.; MacLeod, C.; Khan, A.; Pierce, G. Quantifying impacts on remote photogrammetric inspection using unmanned aerial vehicles. Eng. Struct. 2020, 209, 109940. [Google Scholar] [CrossRef]
- Akhloufi, M.; Benmesbah, N. Outdoor ice accretion estimation of wind turbine blades using computer vision Computer and Robot Vision (CRV). In Proceedings of the 2014 Canadian Conference on Computer and Robot Vision, Montreal, QC, Canada, 4–6 May 2014; pp. 246–253. [Google Scholar]
- Baqersad, J.; Poozesh, P.; Niezrecki, C.; Harvey, E.; Yarala, R. Full Field Inspection of a Utility Scale Wind Turbine Blade Using Digital Image Correlation; CAMX: Orlando, FL, USA, 2014; Volume 10, pp. 2891–2960. [Google Scholar]
- Poozesh, P.; Baqersad, J.; Niezrecki, C.; Avitabile, P.; Harvey, E.; Yarala, R. Large-area photogrammetry based testing of wind turbine blades. Mech. Syst. Signal Process. 2017, 86, 98–115. [Google Scholar] [CrossRef] [Green Version]
- Stokkeland, M.; Klausen, K.; Johansen, T.A. Autonomous visual navigation of unmanned aerial vehicle for wind turbine inspection. In Unmanned Aircraft Systems (ICUAS). In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 998–1007. [Google Scholar]
- Moreno, S.; Peña, M.; Toledo, A.; Treviño, R.; Ponce, H. A new vision-based method using deep learning for damage inspection in wind turbine blades. In Proceedings of the 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 5–7 September 2018; pp. 1–5. [Google Scholar]
- Carr, J.; Baqersad, J.; Niezrecki, C.; Avitabile, P. Full-Field Dynamic Strain on Wind Turbine Blade Using Digital Image Correlation Techniques and Limited Sets of Measured Data from Photogrammetric Targets. Exp. Tech. 2014, 40, 819–831. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, D.; Yu, Q.; Jiang, Y.; Arola, D. Health monitoring of wind turbine blades in operation using three-dimensional digital image correlation. Mech. Syst. Signal Process. 2019, 130, 470–483. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, H.B.; Jung, W.S.; Lim, S.; Hwang, J.H.; Park, C.W. Park Visual testing system for the damaged area detection of wind power plant blade. In Proceedings of the IEEE ISR 2013, Seoul, Korea, 24–26 October 2013; IEEE: Piscataway, NJ, USA, 2013; Volume 2013, pp. 1–5. [Google Scholar]
- Purarjomandlangrudi, A.; Nourbakhsh, G. Acoustic emission condition monitoring: An application for wind turbine fault detection. Int. J. Res. Eng. Technol. 2013, 2, 907–918. [Google Scholar]
- Wei, J.; McCarty, J. Acoustic emission evaluation of composite wind turbine blades during fatigue testing. Wind Eng. 1993, 17, 266–274. [Google Scholar]
- Shateri, M.; Ghaib, M.; Svecova, D.; Thomson, D. On acoustic emission for damage detection and failure prediction in fiber reinforced polymer rods using pattern recognition analysis. Smart Mater. Struct. 2017, 26, 065023. [Google Scholar] [CrossRef]
- Márquez, F.P.G.; Tobias, A.M.; Pérez, J.M.P.; Papaelias, M. Condition monitoring of wind turbines: Techniques and methods. Renew. Energy 2012, 46, 169–178. [Google Scholar] [CrossRef]
- Tang, J.; Soua, S.; Mares, C.; Gan, T.H. Gan an experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades. Renew. Energy 2016, 99, 170–179. [Google Scholar] [CrossRef]
- Tang, J.; Soua, S.; Mares, C.; Gan, T.H. Gan A pattern recognition approach to acoustic emission data originating from fatigue of wind turbine blades. Sensors 2017, 17, 2507. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Liu, P.F.; Chen, Z.P.; Leng, J.X.; Jiao, L. Achieving robust damage mode identification of adhesive composite joints for wind turbine blade using acoustic emission and machine learning. Compos. Struct. 2020, 236, 111840. [Google Scholar] [CrossRef]
- Xu, D.; Liu, P.; Chen, Z. Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission. Compos. Struct. 2021, 255, 112954. [Google Scholar] [CrossRef]
- Han, B.H.; Yoon, D.J.; Huh, Y.H.; Lee, Y.S. Damage assessment of wind turbine blade under static loading test using acoustic emission. J. Intell. Mater. Syst. Struct. 2014, 25, 621–630. [Google Scholar] [CrossRef]
- Zarouchas, D.; van Hemelrijck, D. Mechanical characterization and damage assessment of thick adhesives for wind turbine blades using acoustic emission and digital image correlation technique. J. Adhes. Sci. Technol. 2014, 28, 1500–1516. [Google Scholar] [CrossRef]
- Bouzid, O.M.; Tian, G.Y.; Cumanan, K.; Moore, D. Moore Structural health monitoring of wind turbine blades: Acoustic source localization using wireless sensor networks. J. Sens. 2015, 2015, 139695. [Google Scholar] [CrossRef]
- Gómez Muñoz, C.Q.; García Márquez, F.P. A new fault location approach for acoustic emission techniques in wind turbines. Energies 2016, 1, 40. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Li, Y.; Li, Z.; Liang, X.; Pang, Y.; Wang, F. Interlaminar shear properties and acoustic emission monitoring of the delaminated composites for wind turbine blades. In Advances in Acoustic Emission Technology; Springer: New York, NY, USA, 2015; pp. 557–566. [Google Scholar]
- Bo, Z.; Yanan, Z.; Changzheng, C. Acoustic emission detection of fatigue cracks in wind turbine blades based on blind deconvolution separation. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 959–970. [Google Scholar] [CrossRef]
- Qiao, W.; Lu, D. A survey on wind turbine condition monitoring and fault diagnosis—Part II: Signals and signal processing methods. IEEE Trans. Ind. Electron. 2015, 62, 6546–6557. [Google Scholar] [CrossRef]
- Glowacz, A. Fault diagnosis of single-phase induction motor based on acoustic signals. Mech. Syst. Signal Process. 2019, 117, 65–80. [Google Scholar] [CrossRef]
- Rumsey, M.A.; Musial, W. Application of infrared thermography non-destructive testing during wind turbine blade tests. ASME J. Sol. Energy Eng. 2001, 123, 271. [Google Scholar] [CrossRef]
- Worzewski, T.; Krankenhagen, R.; Doroshtnasir, M.; Röllig, M.; Maierhofer, C.; Steinfurth, H. Thermographic inspection of a wind turbine rotor blade segment utilizing natural conditions as excitation source, Part I: Solar excitation for detecting deep structures in GFRP. Infrared Phys. Technol. 2016, 76, 756–766. [Google Scholar] [CrossRef]
- Colone, L.; Hovgaard, M.K.; Glavind, L.; Brincker, R. Mass detection, localization and estimation for wind turbine blades based on statistical pattern recognition. Mech. Syst. Signal Process. 2018, 107, 266–277. [Google Scholar] [CrossRef]
- Summers, A.; Wang, Q.; Brady, N.; Holden, R. Investigating the measurement of offshore wind turbine blades using coherent laser radar. Robot. Comput.-Integr. Manuf. 2016, 41, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Sun, D. Testing, inspecting and monitoring technologies for wind turbine blades: A survey. Renew. Sustain. Energy Rev. 2013, 22, 515–526. [Google Scholar] [CrossRef]
- Newman, J.W. System and Method for Ground Based Inspection of Wind Turbine Blades; Digital Wind Systems Inc.: Newtown Square, PA, USA, 2017. [Google Scholar]
- Doroshtnasir, M.; Worzewski, T.; Krankenhagen, R.; Röllig, M. On-site inspection of potential defects in wind turbine rotor blades with thermography. Wind Energy 2016, 19, 1407–1422. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.; Shen, J.; Wang, X.; Zhang, C.; Zhao, Y. Adhesive quality inspection of wind rotor blades using thermography. In AIP Conference Proceedings; AIP Publishing: Maharashtra, India, 2018; p. 230020. [Google Scholar]
- Lizaranzu, M.; Lario, A.; Chiminelli, A.; Amenabar, I. Non-destructive testing of composite materials by means of active thermography-based tools. Infrared Phys. Technol. 2015, 71, 113–120. [Google Scholar] [CrossRef]
- Hwang, S.; An, Y.K.; Sohn, H. Continuous line laser thermography for damage imaging of rotating wind turbine blades. Procedia Eng. 2017, 188, 225–232. [Google Scholar] [CrossRef]
- Hwang, S.; An, Y.K.; Yang, J.; Sohn, H. Remote inspection of internal delamination in wind turbine blades using continuous line laser scanning thermography. Int. J. Precis. Eng. Manuf.-Green Technol. 2020, 7, 699–712. [Google Scholar] [CrossRef]
- Dollinger, C.; Balaresque, N.; Gaudern, N.; Gleichauf, D.; Sorg, M.; Fischer, A. Ir thermographic flow visualization for the quantification of boundary layer flow disturbances due to the leading edge condition. Renew. Energy 2019, 138, 709–721. [Google Scholar] [CrossRef]
- Galleguillos, C.; Zorrilla, A.; Jimenez, A.; Diaz, L.; Montiano, Á.L.; Barroso, M.; Viguria, A.; Lasagni, F. Thermographic non-destructive inspection of wind turbine blades using unmanned aerial systems. Plast. Rubber Compos. 2015, 44, 98–103. [Google Scholar] [CrossRef]
- Muñoz, C.Q.G.; Márquez, F.P.G.; Tomás, J.M.S. Ice detection using thermal infrared radiometry on wind turbine blades. Measurement 2016, 93, 157–163. [Google Scholar] [CrossRef]
- Sanati, H.; Wood, D.; Sun, Q. Condition monitoring of wind turbine blades using active and passive thermography. Appl. Sci. 2018, 8, 2004. [Google Scholar] [CrossRef] [Green Version]
- Hahn, F.; Kensche, C.W.; Paynter, R.J.H.; Dutton, A.G.; Kildegaard, C.; Kosgaard, J. Design, Fatigue Test and NDE of a Sectional Wind Turbine Rotor Blade. J. Thermoplast. Compos. Mater. 2002, 15, 267–277. [Google Scholar] [CrossRef]
- Dutton, A.G. Thermoelastic stress measurement and acoustic emission mon-itoring in wind turbine blade testing. In Proceedings of the European Wind Energy Conference, London, UK, 22–25 November 2004. [Google Scholar]
- Martin, R.W.; Sabato, A.; Schoenberg, A.; Giles, R.H.; Niezrecki, C. Comparison of Nondestructive Testing Techniques for the Inspection of Wind Turbine Blades’ Spar Caps. Wind Energy 2018, 21, 980–996. [Google Scholar] [CrossRef]
- Tchakoua, P.; Wamkeue, R.; Ouhrouche, M.; Slaoui-Hasnaoui, F.; Tameghe, T.A.; Ekemb, G. Wind turbine condition monitoring: State-of-the-art review, new trends, and future challenges. Energies 2014, 7, 2595–2630. [Google Scholar] [CrossRef] [Green Version]
- Moll, J.; Arnold, P.; Mälzer, M.; Krozer, V.; Pozdniakov, D.; Salman, R.; Rediske, S.; Scholz, M.; Friedmann, H.; Nuber, A. Radar-based structural health monitoring of wind turbine blades: The case of damage localization. Wind Energy 2018, 21, 676–680. [Google Scholar]
- Ye, G.; Neal, B.; Boot, A.; Kappatos, V.; Selcuk, C.; Gan, T.H. Development of an ultrasonic NDT system for automated in-situ inspection of wind turbine blades. In Proceedings of the Seventh European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014. [Google Scholar]
- Yang, W. Testing and Condition Monitoring of Composite Wind Turbine Blades. In Recent Advances in Composite Materials for Wind Turbines Blades; Attaf, B., Ed.; The World Academic Publishing Co., Ltd.: Hong Kong, China, 2013; pp. 147–169. [Google Scholar]
- Tiwari, K.A.; Raisutis, R. Refinement of defect detection in the contact and non-contact ultrasonic non-destructive testing of wind turbine blade using guided waves. Procedia Struct. Integr. 2018, 13, 1566–1570. [Google Scholar] [CrossRef]
- Tiwari, K.A.; Raisutis, R. Post-processing of ultrasonic signals for the analysis of defects in wind turbine blade using guided waves. J. Strain Anal. Eng. Des. 2018, 53, 546–555. [Google Scholar] [CrossRef]
- Tiwari, K.A.; Raisutis, R.; Samaitis, V. Hybrid signal processing technique to improve the defect estimation in ultrasonic non-destructive testing of composite structures. Sensors 2017, 17, 2858. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.X.; Wang, Z.H.; Long, S.G.; Cai, M.; Wang, X.; Chen, X.Y.; Bu, J.L. Research on automatic positioning system of ultrasonic testing of wind turbine blade flaws. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Sochi, Russia, 2017; p. 012074. [Google Scholar]
- Park, B.; Sohn, H.; Malinowski, P.; Ostachowicz, W. Delamination localization in wind turbine blades based on adaptive time-of-flight analysis of noncontact laser ultrasonic signals. Nondestr. Test. Eval. 2017, 32, 1–20. [Google Scholar] [CrossRef]
- Jiménez, A.A.; Muñoz, C.Q.G.; Márquez, F.P.G. Dirt and Mud Detection and Diagnosis on a Wind Turbine Blade Employing Guided Waves and Supervised Learning Classifiers. Reliab. Eng. Syst. Saf. 2018, 184, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Lamarre, A. Improved Inspection of Composite Wind Turbine Blades with Accessible Advanced Ultrasonic Phased Array Technology. In Proceedings of the 15th Asia Pacific Conference for Non-destructive Testing (APCNDT2017), Singapore, 13–17 November 2017; pp. 1–8. [Google Scholar]
- Li, T.; Yang, Y.; Gu, X.W.; Long, S.G.; Wang, Z.H. Quantitative research into millimetre-scale debonding defects in wind turbine blade bonding structures using ultrasonic inspection: Numerical simulations. Insight-Non-Destr. Test. Cond. 2019, 61, 316–323. [Google Scholar] [CrossRef]
- Zuo, H.; Yang, Z.; Xu, C.; Tian, S.; Chen, X. Damage identification for plate-like structures using ultrasonic guided wave based on improved music method. Compos. Struct. 2018, 203, 164–171. [Google Scholar] [CrossRef]
- Shoja, S.; Berbyuk, V.; Boström, A. Guided wave-based approach for ice detection on wind turbine blades. Wind Eng. 2018, 42, 483–495. [Google Scholar] [CrossRef]
- Michaels, T.E.; Michaels, J.E. Application of Acoustic Wavefield Imaging to Non-Contact Ultrasonic Inspection of Bonded Components. AIP Conf. Proc. 2006, 820, 1484–1491. [Google Scholar]
- Park, B.; An, Y.-K.; Sohn, H. Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Compos. Sci. Technol. 2014, 100, 10–18. [Google Scholar] [CrossRef]
- Oliveira, M.A.; Filho, E.F.S.; Albuquerque, M.C.; Santos, Y.T.; da Silva, I.C.; Farias, C.T. Ultrasound-based identification of damage in wind turbine blades using novelty detection. Ultrasonics 2020, 108, 106166. [Google Scholar] [CrossRef]
- Ciang, C.C.; Lee, J.R.; Bang, H.J. Structural health monitoring for a wind turbine system: A review of damage detection methods. Meas. Sci. Technol. 2008, 19, 122001. [Google Scholar] [CrossRef] [Green Version]
- Amenabar, I.; Mendikute, A.; López-Arraiza, A.; Lizaranzu, M.; Aurrekoetxea, J. Comparison and analysis of non-destructive testing techniques suitable for delamination inspection in wind turbine blades. Compos. Part B Eng. 2011, 42, 1298–1305. [Google Scholar] [CrossRef]
- Grasse, F.; Trappe, V.; Thöns, S.; Said, S. Structural health monitoring of wind turbine blades by strain measurement and vibration analysis. In Proceedings of the EURODYN 2011—8th International Conference on Structural Dynamics, Leuven, Belgium, 4–6 July 2011. [Google Scholar]
- Adams, D.; White, J.; Rumsey, M.; Farrar, C. Structural health monitoring of wind turbines: Method and application to a HAWT. Wind Energy 2011, 14, 603–623. [Google Scholar] [CrossRef]
- Tcherniak, D. Rotor anisotropy as a blade damage indicator for wind turbine structural health monitoring systems. Mech. Syst. Signal Process. 2016, 74, 183–198. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Adeli, H. Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures. Arch. Comput. Methods Eng. 2014, 23, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, M.; Xiang, J. Damage detection method for wind turbine blades based on dynamics analysis and mode shape difference curvature information. Mech. Syst. Signal Process. 2014, 48, 351–367. [Google Scholar] [CrossRef]
- Dervilis, N.; Choi, M.; Taylor, S.G.; Barthorpe, R.J.; Park, G.; Farrar, C.R.; Worden, K. On damage diagnosis for a wind turbine blade using pattern recognition. J. Sound Vib. 2014, 333, 1833–1850. [Google Scholar] [CrossRef]
- Skrimpas, G.A.; Kleani, K.; Mijatovic, N.; Sweeney, C.W.; Jensen, B.B.; Holboell, J. Detection of icing on wind turbine blades by means of vibration and power curve analysis. Wind Energy 2016, 19, 1819–1832. [Google Scholar] [CrossRef]
- Ulriksen, M.D.; Tcherniak, D.; Kirkegaard, P.H.; Damkilde, L. Operational modal analysis and wavelet transformation for damage identification in wind turbine blades. Struct. Health Monit. 2016, 15, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Doliński, Ł.; Krawczuk, M.; Żak, A. Detection of delamination in laminate wind turbine blades using one-dimensional wavelet analysis of modal responses. Shock Vib. 2018, 2018, 4507879. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, K.; Wang, Y.; Omariba, Z.B. Ice detection model of wind turbine blades based on random forest classifier. Energies 2018, 11, 2548. [Google Scholar] [CrossRef] [Green Version]
- Ganeriwala, S.N.; Yang, J.; Richardson, M. Using modal analysis for detecting cracks in wind turbine blades. J. Sound Vib. 2011, 45, 10–13. [Google Scholar]
- Tcherniak, D.; Mølgaard, L.L. Vibration-based SHM System: Application to Wind Turbine Blades. J. Phys. Conf. Ser. 2015, 628, 012072. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.; Chatzi, E.N.; Dertimanis, V.K.; Spiridonakos, M.D. Vibration-based experimental damage detection of a small-scale wind turbine blade. Struct. Health Monit. Int. J. 2016, 16, 79–96. [Google Scholar] [CrossRef]
- Avendano-Valencia, L.D.; Chatzi, E.N.; Tcherniak, D. Gaussian process models for mitigation of operational variability in the structural health monitoring of wind turbines. Mech. Syst. Signal Process. 2020, 142, 106686. [Google Scholar] [CrossRef]
- Tcherniak, D.; Mølgaard, L.L. Active vibration-based structural health monitoring system for wind turbine blade: Demonstration on an operating Vestas V27 wind turbine. Struct. Health Monit. 2017, 16, 536–550. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Ho, S.-C.M.; Song, G.; Ren, L.; Li, H. A review of damage detection methods for wind turbine blades. Smart Mater. Struct. 2015, 24, 033001. [Google Scholar] [CrossRef]
- Beganovic, N.; Söffker, D. Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained results. Renew. Sustain. Energy Rev. 2016, 64, 68–83. [Google Scholar] [CrossRef]
- Barlas, E.; Zhu, W.J.; Shen, W.Z.; Dag, K.O.; Moriarty, P. Consistent modelling of wind turbine noise propagation from source to receiver. J. Acoust. Soc. Am. 2017, 142, 3297–3310. [Google Scholar] [CrossRef] [Green Version]
- Krause, T.; Ostermann, J. Damage detection for wind turbine rotor blades using airborne sound. Struct. Control Health Monit. 2020, 27, e2520. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, B.; Li, Y.Z.; Gao, B.C. Acoustical crack feature extraction of turbine blades under complex background noise. Beijing Youdian Daxue Xuebao/J. Beijing Univ. Posts Telecommun. 2017, 40, 117–122. [Google Scholar]
- Sun, S.; Wang, T.; Yang, H.; Chu, F. Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function. Renew. Energy 2022, 181, 59–70. [Google Scholar] [CrossRef]
- Fazenda, B. Acoustic based condition monitoring of turbine blades. In Proceedings of the 18th International Congress on Sound and Vibration, Rio de Janeiro, Brazil, 10–14 July 2011. [Google Scholar]
- Fazenda, B.; Comboni Bustos, D. Acoustic condition monitoring of wind turbines: Tip faults. In Proceedings of the 9th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, London, UK, 12–14 June 2012. [Google Scholar]
- Krause, T.; Preihs, S.; Ostermann, J. Detection of Impulse-Like Airborne Sound for Damage Identification in Rotor Blades of Wind Turbines. In Proceedings of the EWSHM—7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014. [Google Scholar]
- Krause, T.; Preihs, S.; Ostermann, J. Acoustic Emission Damage Detection for Wind Turbine Rotor Blades Using Airborne Sound. In Proceedings of the 10th International Workshop on Structural Health Monitoring (IWSHM), Stanford, CA, USA, 1–3 September 2015. [Google Scholar]
- Arora, V.; Wijnant, Y.H.; de Boer, A. Acoustic-based damage detection method. Appl. Acoust. 2014, 80, 23–27. [Google Scholar] [CrossRef]
- Poozesh, P.; Aizawa, K.; Niezrecki, C.; Baqersad, J.; Inalpolat, M.; Heilmann, G. Structural health monitoring of wind turbine blades using acoustic microphone array. Struct. Health Monit. 2017, 16, 471–485. [Google Scholar] [CrossRef]
- Regan, T.; Beale, C.; Inalpolat, M. Wind Turbine Blade Damage Detection Using Supervised Machine Learning Algorithms. J. Vib. Acoust. 2017, 139, 061010–061014. [Google Scholar] [CrossRef]
- Lam, H.F.; Ng, C.T.; Lee, Y.Y.; Sun, H.Y. System identification of an enclosure with leakages using a probabilistic approach. J. Sound Vib. 2009, 322, 756–771. [Google Scholar] [CrossRef] [Green Version]
- Canturk, R.; Inalpolat, M. A computational acoustic interrogation of wind turbine blades with damage. In Comsol Conference; University of Massachusetts: Lowell, MA, USA, 2015; pp. 7–9. [Google Scholar]
- Beale, C.; Niezrecki, C.; Inalpolat, M. An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage detection from wind turbine blades. Mech. Syst. Signal Process. 2020, 142, 106754. [Google Scholar] [CrossRef]
- Holub, W.; Haßler, U. Evaluation of acquisition geometries for imaging of ondulations in glass–fiber reinforced materials. In Proceedings of the International Conference on Industrial Computed Tomography, Wels, Austria, 25–28 February 2014. [Google Scholar]
- Fantidis, J.; Potolias, C.; Bandekas, D. Wind turbine blade nondestructive testing with a transportable radiography system. Sci. Technol. Nucl. Install. 2011, 2011, 347320. [Google Scholar] [CrossRef]
- Francis, D. 4—Non-destructive evaluation (nde) of composites: Introduction to shearography. In Non-Destructive Evaluation (nde) of Polymer Matrix Composites; Karbhari, V.M., Ed.; Cranfield University: Bedford, UK, 2013; pp. 56–83. [Google Scholar]
- Rizk, P.; Younes, R.; Ilinca, A.; Khoder, J. Wind turbine blade defect detection using hyperspectral imaging. Remote Sens. Appl. Soc. Environ. 2021, 22, 100522. [Google Scholar] [CrossRef]
- Nasiri, S.; Khosravani, M.R.; Weinberg, K. Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review. Eng. Fail. Anal. 2017, 81, 270–293. [Google Scholar] [CrossRef]
- Kyprianou, A.; Tjirkallis, A. Structural damage detection of a cantilever beam under varying temperature using a collection of time series. Procedia Struct. Integr. 2017, 5, 1192–1197. [Google Scholar] [CrossRef]
Main Detection Methods | Advantage | Disadvantage |
---|---|---|
Strain detection |
|
|
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
Visual detection |
|
|
|
| |
|
| |
|
| |
Acoustic emission detection |
|
|
|
| |
|
| |
|
| |
Thermal imaging detection |
|
|
|
| |
|
| |
|
| |
|
| |
Ultrasonic detection |
|
|
|
| |
|
| |
|
| |
|
| |
Vibration detection |
|
|
|
| |
|
| |
|
| |
Acoustic detection |
|
|
|
| |
|
| |
|
| |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Xue, Y.; He, C.; Zhao, Y. Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades. Energies 2022, 15, 5672. https://doi.org/10.3390/en15155672
Wang W, Xue Y, He C, Zhao Y. Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades. Energies. 2022; 15(15):5672. https://doi.org/10.3390/en15155672
Chicago/Turabian StyleWang, Wenjie, Yu Xue, Chengkuan He, and Yongnian Zhao. 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades" Energies 15, no. 15: 5672. https://doi.org/10.3390/en15155672
APA StyleWang, W., Xue, Y., He, C., & Zhao, Y. (2022). Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades. Energies, 15(15), 5672. https://doi.org/10.3390/en15155672