Wearable Optical Fiber Sensors in Medical Monitoring Applications: A Review
Abstract
:1. Introduction
2. Wearable Fiber Bragg Grating Sensors
2.1. FBG Respiratory Monitoring
2.2. FBG Joint Angle Monitoring
2.3. FBG Other Applications
2.4. Summary of FBG Wearable Medical Monitoring Equipment
3. Wearable Optical Fiber Sensor Based on the Principle of Light Intensity Change
3.1. Joint Angle Monitoring
3.2. Respiratory Monitoring
3.3. Gait-Assist Insole
3.4. Summary of Wearable Optical Fiber Sensors Based on Light Intensity Change in the Medical Field
4. Wearable Optical Fiber Medical Monitoring Equipment Based on FPI
5. Conclusions
6. Recommendation and Challenge
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leal, A.G.; Diaz, C.A.R.; Avellar, L.M.; Pontes, M.J.; Marques, C.; Frizera, A. Polymer Optical Fiber Sensors in Healthcare Applications: A Comprehensive Review. Sensors 2019, 19, 3156. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Xiang, Z.; OuYang, X.; Zhang, J.; Lau, N.; Zhou, J.; Chan, C.C. Wearable Fiber Optic Technology Based on Smart Textile: A Review. Materials 2019, 12, 3311. [Google Scholar] [CrossRef] [Green Version]
- Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol. 2022, 119, 69–89. [Google Scholar] [CrossRef]
- Sareh, S.; Noh, Y. Low Profile Stretch Sensor for Soft Wearable Robotics. In Proceedings of the 1st IEEE-RAS International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 24–28 April 2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 479–484. [Google Scholar]
- Li, H.; Yang, H.; Li, E.; Liu, Z.; Wei, K. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating. Opt. Express 2012, 20, 11740–11752. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.; Fortunato, G.; Radacsi, N. Wearable flexible sweat sensors for healthcare monitoring: A review. J. R. Soc. Interface 2019, 16, 20190217. [Google Scholar] [CrossRef]
- Guo, J.; Yang, C.; Dai, Q.; Kong, L. Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. Sensors 2019, 19, 3771. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, M.; Sampei, K.; Cortes, C.; Ogawa, M.; Oikawa, A.; Miki, N. Wearable line-of-sight detection system using micro-fabricated transparent optical sensors on eyeglasses. Sens. Actuators A-Phys. 2014, 205, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Wan, L.; Gong, Z.; Zhou, Z.; Ma, Z.; OuYang, X.; He, Z.; Chan, C.C. Multifunctional Textile Platform for Fiber Optic Wearable Temperature-Monitoring Application. Micromachines 2019, 10, 866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Liu, D.; Cai, Z.; Du, B.; Zou, M.; Tang, S.; Li, B.; Xiong, C.; Ji, P.; Zhang, L.; et al. A Wearable Breath Sensor Based on Fiber-Tip Microcantilever. Biosensors 2022, 12, 168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Han, W.; Wang, Y.; Lu, M.; Dong, L. Tape nanolithography: A rapid and simple method for fabricating flexible, wearable nanophotonic devices. Microsyst. Nanoeng. 2018, 4, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hariyanti; Devara, K.; Aisyah, F.N.; Nadia, K.V.A.W.; Purnamaningsih, R.W. Design of A Wearable Fiber Optic Respiration Sensor for Application in NICU Incubators. In Proceedings of the 3rd International Symposium of Biomedical Engineering (ISBE) on Recent Progress in Biomaterials, Drugs Development, and Medical Devices, Jakarta, Indonesia, 6–8 August 2019. [Google Scholar]
- Andrews, R.R.; Rudko, R.I.; Yeomans, R.P.; Desantis, I.J.; Gronek, W. Myocardial Revascularization System for Surgical Treatment of Cardiovascular Disease, Includes Laser Source, Optical Fiber, Positioning System and Control for Synchronizing Laser Firing and Fiber Positioning to Heart Activity. WIPO Patent WO200166028-A1, 5 March 2001. [Google Scholar]
- Jiang, H.; Jiang, Q.; Liu, Q. Cardiovascular Medicinal Treatment Detecting Instrument for Tissue Regeneration of Blood Vessel Disease e.g., Hyperviscosaemia, has Luminiferous Optical Fiber Whose END is connected with Adjustable High-and-Low Energy Light Source. China Patent CN201186106-Y, 28 January 2009. [Google Scholar]
- Pan, S.; Wu, N. High-Adaptability Interventional Catheter for Treating Cardiovascular Disease, has Sealing Sleeve Connected to One End of Tube Structure, and Laser Optical Fiber That is Set in Optical Fiber Mounting Channel and Exposed from One End of Tube Structure Provided with Ball Bag. China Patent CN113974826-A, 29 October 2021. [Google Scholar]
- Tsiminis, G.; Klaric, T.S.; Schartner, E.P.; Warren-Smith, S.C.; Lewis, M.D.; Koblar, S.A.; Monro, T.M. Fibre-optic photochemical stroke: Generating and measuring photochemical changes inside the brain. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014. [Google Scholar]
- Chabrol, C.; Renault, S.; Claude, C.; Sarah, R. Device for Illuminating Optically Certain Areas of Human Brain during Treatment of Parkinson’s Disease, has Probe Formed with Elongated Structure, and Centering Element Positioned around Optical Fiber, and Arranged to Form Wedge. France Patent FR3074692-A1, 25 February 2022. [Google Scholar]
- Chabrol, C.; Renault, S.; Claude, C.; Sarah, R. Device for Illuminating Optically Certain Areas of Human Brain during Treatment of Parkinson’s Disease, has Optical Fiber Stripped to Remove Protective Sheath for Improving Sealing and Flexibility of Probe on Non-Zero Length Portion. France Patent FR3074691-A1, 11 March 2022. [Google Scholar]
- Di Mauro, T.M.; Fisher, M.; Toselli, R.; Dimauro, T.M. Parkinson’s Disease Treating Method, Involves Delivering Light Through Distal End Portion of Optical Wave Guide to Irradiate Portion of Substantia Nigra with Effective Amount of Light. U.S. Patent US2009222067-A1, 26 April 2016. [Google Scholar]
- Zi, Y.; Zhu, J.; Wang, M.K.; Hu, L.P.; Hu, Y.L.; Wageh, S.; Al-Hartomy, O.A.; Al-Ghamdi, A.; Huang, W.C.; Zhang, H. CdS@CdSe Core/Shell Quantum Dots for Highly Improved Self-Powered Photodetection Performance. Inorg. Chem. 2021, 60, 18608–18613. [Google Scholar] [CrossRef]
- Rezaei, A.; Cuthbert, T.J.; Gholami, M.; Menon, C. Application-Based Production and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles. Sensors 2019, 19, 4288. [Google Scholar] [CrossRef] [Green Version]
- Issatayeva, A.; Beisenova, A.; Tosi, D.; Molardi, C. Fiber-Optic Based Smart Textiles for Real-Time Monitoring of Breathing Rate. Sensors 2020, 20, 3408. [Google Scholar] [CrossRef]
- Domingues, M.d.F.; Rosa, V.; Nepomuceno, A.C.; Tavares, C.; Alberto, N.; Andre, P.; Radwan, A.; Da Costa Antunes, P.F. Wearable Devices for Remote Physical Rehabilitation Using a Fabry-Perot Optical Fiber Sensor: Ankle Joint Kinematic. IEEE Access 2020, 8, 109866–109875. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Liu, B.; Pang, Y.-N.; Liu, J.; Shi, J.-L.; Wan, S.-P.; He, X.-D.; Yuan, J.; Wu, Q. Low-Cost Wearable Sensor Based on a D-Shaped Plastic Optical Fiber for Respiration Monitoring. IEEE Trans. Instrum. Meas. 2021, 70, 4004808. [Google Scholar] [CrossRef]
- Ziyang, X.; Jianxun, L.; Zhuxin, Z.; Zhengyi, M.; Zidan, G.; Jie, Z.; Chi Chiu, C. Wearable Real-Time Monitoring System Based on Fiber Bragg Grating Pressure Sensor for Compression Therapy Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 552–559. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev. 2021, 453, 214305. [Google Scholar] [CrossRef]
- Domingues, M.F.; Tavares, C.; Nepomuceno, A.C.; Alberto, N.; Andre, P.; Antunes, P.; Chi, H.R.; Radwan, A. Non-invasive wearable optical sensors for full gait analysis in e-health architecture. IEEE Wirel. Commun. 2021, 28, 28–35. [Google Scholar] [CrossRef]
- Casas, J.; Leal-Junior, A.; Diaz, C.R.; Frizera, A.; Munera, M.; Cifuentes, C.A. Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots. Materials 2019, 12, 1443. [Google Scholar] [CrossRef] [Green Version]
- Apiwattanadej, T.; Chun, B.J.; Lee, H.; Li, K.H.H.; Kim, Y.-J. Stability Test of the Silicon Fiber Bragg Grating Embroidered on Textile for Joint Angle measurement. In Proceedings of the 5th International Conference on Optical and Photonics Engineering, Singapore, 4–7 April 2017. [Google Scholar]
- Rezende, A.; Alves, C.; Marques, I.; Silva, M.A.; Naves, E. Polymer Optical Fiber Goniometer: A New Portable, Low Cost and Reliable Sensor for Joint Analysis. Sensors 2018, 18, 4293. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, H.; Li, S.; Hu, J.; Zheng, X.; Li, R.; Chen, Y.; Su, Y. Adhesion-Free Thin-Film-Like Curvature Sensors Integrated on Flexible and Wearable Electronics for Monitoring Bending of Joints and Various Body Gestures. Adv. Mater. Technol. 2019, 4, 1800327. [Google Scholar] [CrossRef] [Green Version]
- Valencia-Jimenez, N.; Leal-Junior, A.; Avellar, L.; Vargas-Valencia, L.; Caicedo-Rodriguez, P.; Ramirez-Duque, A.A.; Lyra, M.; Marques, C.; Bastos, T.; Frizera, A. A Comparative Study of Markerless Systems Based on Color-Depth Cameras, Polymer Optical Fiber Curvature Sensors, and Inertial Measurement Units: Towards Increasing the Accuracy in Joint Angle Estimation. Electronics 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; He, B.; Zhao, X.; Xie, J.; Yao, W.; Xu, G. A wearable fiber-optic sensor for monitoring human elbow and wrist joint motion. Adv. Robot. 2021, 35, 400–412. [Google Scholar] [CrossRef]
- Koyama, S.; Ishizawa, H.; Sakaguchi, A.; Hosoya, S.; Kawamura, T. Influence on Calculated Blood Pressure of Measurement Posture for the Development of Wearable Vital Sign Sensors. J. Sens. 2017, 2017, 8916596. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, W.; Nogami, H.; Takeuchi, S.; Furue, M.; Higurashi, E.; Sawada, R. Detection of Site-Specific Blood Flow Variation in Humans during Running by a Wearable Laser Doppler Flowmeter. Sensors 2015, 15, 25507–25519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaltieri, M.; Massaroni, C.; Lo Presti, D.; Bravi, M.; Sabbadini, R.; Miccinilli, S.; Sterzi, S.; Formica, D.; Schena, E. A Wearable Device Based on a Fiber Bragg Grating Sensor for Low Back Movements Monitoring. Sensors 2020, 20, 3825. [Google Scholar] [CrossRef]
- Lo Presti, D.; Cimini, S.; Massaroni, C.; D’Amato, R.; Caponero, M.A.; De Gara, L.; Schena, E. Plant Wearable Sensors Based on FBG Technology for Growth and Microclimate Monitoring. Sensors 2021, 21, 6327. [Google Scholar] [CrossRef] [PubMed]
- Quandt, B.M.; Braun, F.; Ferrario, D.; Rossi, R.M.; Scheel-Sailer, A.; Wolf, M.; Bona, G.-L.; Hufenus, R.; Scherer, L.J.; Boesel, L.F. Body-monitoring with photonic textiles: A reflective heartbeat sensor based on polymer optical fibres. J. R. Soc. Interface 2017, 14, 20170060. [Google Scholar] [CrossRef] [Green Version]
- Boukhayma, A.; Barison, A.; Haddad, S.; Caizzone, A. Ring-Embedded Micro-Power mm-Sized Optical Sensor for Accurate Heart Beat Monitoring. IEEE Access 2021, 9, 127217–127225. [Google Scholar] [CrossRef]
- Romano, C.; Presti, D.L.; Schena, E.; Massaroni, C.; Formica, D.; Caponero, M.A.; Oddo, C.M.; D’Abbraccio, J.; Massari, L.; Longo, U.G.; et al. A wearable system based on fiber Bragg grating for monitoring respiratory and heart activity of archers. In Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Istanbul, Turkey, 26–28 June 2019. [Google Scholar] [CrossRef]
- Krehel, M.; Schmid, M.; Rossi, R.M.; Boesel, L.F.; Bona, G.-L.; Scherer, L.J. An Optical Fibre-Based Sensor for Respiratory Monitoring. Sensors 2014, 14, 13088–13101. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Kim, B.K.; Jang, M.; Kang, K.; Kim, D.E.; Ju, B.-K.; Kim, J. Wearable Hand Module and Real-Time Tracking Algorithms for Measuring Finger Joint Angles of Different Hand Sizes with High Accuracy Using FBG Strain Sensor. Sensors 2020, 20, 1921. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Chen, F.; Lai, H.; Liu, S.; Wang, Y. Wearable breath monitoring based on a flexible fiber-optic humidity sensor. Sens. Actuators B-Chem. 2021, 349, 130794. [Google Scholar] [CrossRef]
- Roudjane, M.; Bellemare-Rousseau, S.; Khalil, M.; Gorgutsa, S.; Miled, A.; Messaddeq, Y. A Portable Wireless Communication Platform Based on a Multi-Material Fiber Sensor for Real-Time Breath Detection. Sensors 2018, 18, 973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Presti, D.; Carnevale, A.; D’Abbraccio, J.; Massari, L.; Massaroni, C.; Sabbadini, R.; Zaltieri, M.; Di Tocco, J.; Bravi, M.; Miccinilli, S.; et al. A Multi-Parametric Wearable System to Monitor Neck Movements and Respiratory Frequency of Computer Workers. Sensors 2020, 20, 536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pant, S.; Umesh, S.; Asokan, S. Knee Angle Measurement Device Using Fiber Bragg Grating Sensor. IEEE Sens. J. 2018, 18, 10034–10040. [Google Scholar] [CrossRef]
- Di Tocco, J.; Presti, D.L.; Zaltieri, M.; D’Alesio, G.; Filosa, M.; Massari, L.; Aliperta, A.; Di Rienzo, M.; Carrozza, M.C.; Ferrarin, M.; et al. A Wearable System Based on Flexible Sensors for Unobtrusive Respiratory Monitoring in Occupational Settings. IEEE Sens. J. 2021, 21, 14369–14378. [Google Scholar] [CrossRef]
- Jha, C.K.; Gajapure, K.; Chakraborty, A.L. Design and Evaluation of an FBG Sensor-Based Glove to Simultaneously Monitor Flexure of Ten Finger Joints. IEEE Sens. J. 2021, 21, 7620–7630. [Google Scholar] [CrossRef]
- Sareh, S.; Noh, Y.; Li, M.; Ranzani, T.; Liu, H.; Althoefer, K. Macrobend optical sensing for pose measurement in soft robot arms. Smart Mater. Struct. 2015, 24, 125024. [Google Scholar] [CrossRef]
- Massaroni, C.; Saccomandi, P.; Schena, E. Medical Smart Textiles Based on Fiber Optic Technology: An Overview. J. Funct. Biomater. 2015, 6, 204–221. [Google Scholar] [CrossRef]
- Massaroni, C.; Venanzi, C.; Silvatti, A.P.; Lo Presti, D.; Saccomandi, P.; Formica, D.; Giurazza, F.; Caponero, M.A.; Schena, E. Smart textile for respiratory monitoring and thoraco-abdominal motion pattern evaluation. J. Biophotonics 2018, 11, e201700263. [Google Scholar] [CrossRef] [Green Version]
- Lo Presti, D.; Romano, C.; Massaroni, C.; D’Abbraccio, J.; Massari, L.; Caponero, M.A.; Oddo, C.M.; Formica, D.; Schena, E. Cardio-Respiratory Monitoring in Archery Using a Smart Textile Based on Flexible Fiber Bragg Grating Sensors. Sensors 2019, 19, 3581. [Google Scholar] [CrossRef] [Green Version]
- Leal-Junior, A.; Avellar, L.; Jaimes, J.; Diaz, C.; dos Santos, W.; Siqueira, A.A.G.; Pontes, M.J.; Marques, C.; Frizera, A. Polymer Optical Fiber-Based Integrated Instrumentation in a Robot-Assisted Rehabilitation Smart Environment: A Proof of Concept. Sensors 2020, 20, 3199. [Google Scholar] [CrossRef] [PubMed]
- Leal-Junior, A.G.; Ribeiro, D.; Avellar, L.M.; Silveira, M.; Diaz, C.A.R.; Frizera-Neto, A.; Blanc, W.; Rocon, E.; Marques, C. Wearable and Fully-Portable Smart Garment for Mechanical Perturbation Detection With Nanoparticles Optical Fibers. IEEE Sens. J. 2021, 21, 2995–3003. [Google Scholar] [CrossRef]
- Wu, R.; Ma, L.; Liu, X.Y. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. Adv. Sci. 2022, 9, 2721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, M.; Zhang, C.; Sun, Z.; Zhao, X.; Miao, C.; Wang, Z. Respiratory fabric sensor based on the side luminescence and photosensitivity mechanism of polymer optical fibers. Opt. Express 2022, 30, 2721–2733. [Google Scholar] [CrossRef] [PubMed]
- Quandt, B.M.; Scherer, L.J.; Boesel, L.F.; Wolf, M.; Bona, G.-L.; Rossi, R.M. Body-Monitoring and Health Supervision by Means of Optical Fiber-Based Sensing Systems in Medical Textiles. Adv. Healthc. Mater. 2015, 4, 330–355. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-P.; Yip, J.; Yick, K.-L.; Lu, C.; Lo, C.K. Textile-based fiber optic sensors for health monitoring: A systematic and citation network analysis review. Text. Res. J. 2021, 92, 2922–2934. [Google Scholar] [CrossRef]
- Wang, J.; Dong, J. Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. Sensors 2020, 20, 3981. [Google Scholar] [CrossRef]
- Sandt, J.D.; Moudio, M.; Clark, J.K.; Hardin, J.; Argenti, C.; Carty, M.; Lewis, J.A.; Kolle, M. Stretchable Optomechanical Fiber Sensors for Pressure Determination in Compressive Medical Textiles. Adv. Health. Mater. 2018, 7, e1800293. [Google Scholar] [CrossRef]
- Bremer, K.; Weigand, F.; Zheng, Y.; Alwis, L.S.; Helbig, R.; Roth, B. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors. Sensors 2017, 17, 345. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, M.; Sonobe, M.; Watanabe, K. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor. Biomed. Opt. Express 2016, 7, 3675–3685. [Google Scholar] [CrossRef] [Green Version]
- Ciocchetti, M.; Massaroni, C.; Saccomandi, P.; Caponero, M.A.; Polimadei, A.; Formica, D.; Schena, E. Smart Textile Based on Fiber Bragg Grating Sensors for Respiratory Monitoring: Design and Preliminary Trials. Biosens.-Basel 2015, 5, 602–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal-Junior, A.; Theodosiou, A.; Diaz, C.; Marques, C.; Pontes, M.J.; Kalli, K.; Frizera-Neto, A. Fiber Bragg Gratings in CYTOP Fibers Embedded in a 3D-Printed Flexible Support for Assessment of Human-Robot Interaction Forces. Materials 2018, 11, 2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenjie, L.; Lin, C.; Zhilin, X.; Phuoc Thien, P.; Ping, S.; Soo Jay, P. Distal end force sensing with optical fiber Bragg gratings for tendon-sheath mechanisms in flexible endoscopic robots. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018. [Google Scholar] [CrossRef]
- Helan, R.; Urban, F. Principle of fiber Bragg gratings measurement. In Proceedings of the 30th International Spring Seminar on Electronics Technology, Cluj Napoca, Romania, 9–13 May 2007; IEEE: Piscataway Township, NJ, USA, 2007; pp. 352–356. [Google Scholar]
- Huang, W.C.; Zhang, Y.; You, Q.; Huang, P.; Wang, Y.Z.; Huang, Z.Y.N.; Ge, Y.Q.; Wu, L.M.; Dong, Z.J.; Dai, X.Y.; et al. Enhanced Photodetection Properties of Tellurium@Selenium Roll-to-Roll Nanotube Heterojunctions. Small 2019, 15, e1900902. [Google Scholar] [CrossRef] [Green Version]
- Carmo, J.P.; Ferreira da Silva, A.M.; Rocha, R.P.; Correia, J.H. Application of Fiber Bragg Gratings to Wearable Garments. IEEE Sens. J. 2012, 12, 261–266. [Google Scholar] [CrossRef]
- Gao, L.; Yang, K.; Chen, X.; Yu, X. Study on the Deformation Measurement of the Cast-In-Place Large-Diameter Pile Using Fiber Bragg Grating Sensors. Sensors 2017, 17, 505. [Google Scholar] [CrossRef] [Green Version]
- Jha, C.K.; Agarwal, S.; Chakraborty, A.L.; Shirpurkar, C. An FBG-Based Sensing Glove to Measure Dynamic Finger Flexure With an Angular Resolution of 0.1 degrees up to Speeds of 80 degrees/s. J. Light. Technol. 2019, 37, 4734–4740. [Google Scholar] [CrossRef]
- Lee, S.-B.; Jung, Y.-J.; Choi, H.-K.; Sohn, I.-B.; Lee, J.-H. Hybrid LPG-FBG Based High-Resolution Micro Bending Strain Sensor. Sensors 2021, 21, 22. [Google Scholar] [CrossRef]
- Koyama, S.; Ishizawa, H.; Fujimoto, K.; Chino, S.; Kobayashi, Y. Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors. Sensors 2017, 17, 48. [Google Scholar] [CrossRef] [Green Version]
- Haseda, Y.; Bonefacino, J.; Tam, H.-Y.; Chino, S.; Koyama, S.; Ishizawa, H. Measurement of Pulse Wave Signals and Blood Pressure by a Plastic Optical Fiber FBG Sensor. Sensors 2019, 19, 5088. [Google Scholar] [CrossRef] [Green Version]
- Katayama, K.; Chino, S.; Koyama, S.; Ishizawa, H.; Fujimoto, K. Verification of Blood Pressure Monitoring System Using Optical Fiber Sensor—Tracing Sudden Blood Pressure Changes. J. Fiber Sci. Technol. 2020, 76, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Eberle, M.J.; Tasker, D.M.; Rourke, H.N.; Spamer, D.J. Coronary Guidewire for Insertion to Body Lumen, has Optical Fiber Pressure Sensor Having Sensor Membrane Which is in Physical Communication with Fiber Bragg Grating (FBG) Interferometer to Transmit Received Pressure to FBG Interferometer. U.S. Patent US2013317372-A1, 16 November 2021. [Google Scholar]
- Bhattacharya, M. Wearable Health Monitoring Device for Detecting Blood Pressure, Comprises a Blood Pressure Sensor with a First Fiber Bragg Grating (FBG) Provided to be Placed in Contact with a Person’s Skin Approximate to an Artery or Vein. U.S. Patent US2021186340-A1, 22 November 2022. [Google Scholar]
- Dziuda, L.; Skibniewski, F.; Rozanowski, K.; Krej, M.; Lewandowski, J. Fiber-Optic Sensor for Monitoring Respiration and Cardiac Activity. In Proceedings of the 10th IEEE Conference on Sensors, Limerick, Ireland, 28–31 October 2011; IEEE: Piscataway Township, NJ, USA, 2011; pp. 413–416. [Google Scholar]
- Dziuda, L.; Skibniewski, F.W.; Krej, M.; Lewandowski, J. Monitoring Respiration and Cardiac Activity Using Fiber Bragg Grating-Based Sensor. IEEE Trans. Biomed. Eng. 2012, 59, 1934–1942. [Google Scholar] [CrossRef]
- Krej, M.; Dziuda, L.; Skibniewski, F.W. A Method of Detecting Heartbeat Locations in the Ballistocardiographic Signal From the Fiber-Optic Vital Signs Sensor. IEEE J. Biomed. Health Inform. 2015, 19, 1443–1450. [Google Scholar] [CrossRef]
- Shi, C.; Tang, Z.; Zhang, H.; Liu, Y. Development of an FBG-Based Wearable Sensor for Simultaneous Respiration and Heartbeat Measurement. IEEE Trans. Instrum. Meas. 2023, 72, 4000409. [Google Scholar]
- Tosi, D.; Olivero, M.; Perrone, G. Low-cost fiber Bragg grating vibroacoustic sensor for voice and heartbeat detection. Appl. Opt. 2008, 47, 5123–5129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Fakih, E.; Abu Osman, N.A.; Adikan, F.R.M. The Use of Fiber Bragg Grating Sensors in Biomechanics and Rehabilitation Applications: The State-of-the-Art and Ongoing Research Topics. Sensors 2012, 12, 12890–12926. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, L.; Zhang, C.; Miao, C.; Yang, K. A wearable FBG pulse-wave sensor based on multilayers compound fabrics structure. In Proceedings of the Conference on Advanced Sensor Systems and Applications VIII, Beijing, China, 11–13 October 2018. [Google Scholar]
- Li, L.; He, R.; Soares, M.S.; Savovic, S.; Hu, X.; Marques, C.; Min, R.; Li, X. Embedded FBG-Based Sensor for Joint Movement Monitoring. IEEE Sens. J. 2021, 21, 26793–26798. [Google Scholar] [CrossRef]
- Zaltieri, M.; Lo Presti, D.; Massaroni, C.; Schena, E.; D’Abbraccio, J.; Massari, L.; Oddo, C.M.; Formica, D.; Caponero, M.A.; Bravi, M.; et al. Feasibility assessment of an FBG-based wearable system for monitoring back dorsal flexion-extension in video terminal workers. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020. [Google Scholar] [CrossRef]
- Silva, A.F.; Goncalves, F.; Ferreira, L.A.; Araujo, F.M.; Mendes, P.M.; Correia, J.H. A Process for Embedding Fiber Bragg Gratings in Flexible Skin Foils. In Proceedings of the Fourth European Workshop on Optical Fibre Sensors, Porto, Portugal, 8–10 September 2010. [Google Scholar]
- Yan, C.; Ferraris, E.; Reynaerts, D. Toward the implementation of flexible sensing sheet with fibre Bragg grating sensing elements. In Proceedings of the Conference on Optical Sensing and Detection II, Brussels, Belgium, 16–19 April 2012. [Google Scholar]
- Rosenberger, M.; Pauer, H.; Girschikofsky, M.; Woern, H.; Schmauss, B.; Hellmann, R. Flexible Polymer Shape Sensor Based on Planar Waveguide Bragg Gratings. IEEE Photonics Technol. Lett. 2016, 28, 1898–1901. [Google Scholar] [CrossRef]
- Ertorer, E.; Haque, M.; Li, J.; Herman, P.R. Femtosecond filaments for rapid and flexible writing of Fiber-Bragg grating (Conference Presentation). In Proceedings of the Conference on Frontiers in Ultrafast Optics—Biomedical, Scientific, and Industrial Applications XVII, San Francisco, CA, USA, 29 January–2 February 2017. [Google Scholar]
- Liu, Y.; Xie, J.; Liu, S.; Zhao, Y.; Zhu, Y.; Qi, G. Research on the methodology of development and calibration of flexible fiber sensors. Measurement 2022, 201, 111730. [Google Scholar] [CrossRef]
- Ambastha, S.; Umesh, S.; Maheshwari, U.K.; Asokan, S. Pulmonary Function Test Using Fiber Bragg Grating Spirometer. J. Light. Technol. 2016, 34, 5682–5688. [Google Scholar] [CrossRef]
- Presti, D.L.; Massaroni, C.; Zaltieri, M.; Sabbadini, R.; Carnevale, A.; Di Tocco, J.; Longo, U.G.; Caponero, M.A.; D’Amato, R.; Schena, E.; et al. A Magnetic Resonance-Compatible Wearable Device Based on Functionalized Fiber Optic Sensor for Respiratory Monitoring. IEEE Sens. J. 2021, 21, 14418–14425. [Google Scholar] [CrossRef]
- Yuan, W.; Li, L.; Wang, Y.; Lian, Z.; Chen, D.; Yu, C.; Lu, C. Temperature and curvature insensitive all-fiber sensor used for human breath monitoring. Opt. Express 2021, 29, 26375–26384. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, D.; Xu, G.; Zhou, J.; Zhang, X.; Liao, C.; Wang, Y. Recent advances in fiber optic sensors for respiratory monitoring. Opt. Fiber Technol. 2022, 72, 103000. [Google Scholar] [CrossRef]
- Das, A.; Ambastha, S.; Sen, S.; Samanta, S. Wearable system for Real-time Remote Monitoring of Respiratory Rate during COVID-19 using Fiber Bragg Grating. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 10–13 December 2020. [Google Scholar] [CrossRef]
- da Silva, A.F.; Goncalves, A.F.; Mendes, P.M.; Correia, J.H. FBG Sensing Glove for Monitoring Hand Posture. IEEE Sens. J. 2011, 11, 2442–2448. [Google Scholar] [CrossRef]
- Padma, S.; Umesh, S.; Pant, S.; Srinivas, T.; Asokan, S. Fiber Bragg Grating based Tunable Sensitivity Goniometer. In Proceedings of the Conference on Photonic Instrumentation Engineering III, San Francisco, CA, USA, 17–18 February 2016. [Google Scholar]
- Umesh, S.; Padma, S.; Srinivas, T.; Asokan, S. Fiber Bragg Grating Goniometer for Joint Angle Measurement. IEEE Sens. J. 2018, 18, 216–222. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Lou, X.; Meng, F.; Zhu, L. Soft optical fiber curvature sensor for finger joint angle proprioception. Optik 2019, 179, 298–304. [Google Scholar] [CrossRef]
- Pant, S.; Umesh, S.; Asokan, S. Assessment of Spatio-Temporal Parameters of Human Gait Using Fiber Bragg Grating Sensor-Based Devices. IEEE Sens. J. 2021, 21, 9186–9193. [Google Scholar] [CrossRef]
- Yan, J.; He, S. A simple method for simultaneous measurement of the tilt angle and temperature. Microw. Opt. Technol. Lett. 2007, 49, 2248–2250. [Google Scholar] [CrossRef]
- Yu, H.; Yang, X.; Tong, Z.; Cao, Y.; Zhang, A. Temperature-Independent Rotational Angle Sensor Based on Fiber Bragg Grating. IEEE Sens. J. 2011, 11, 1233–1235. [Google Scholar] [CrossRef]
- Lo Presti, D.; Santucci, F.; Massaroni, C.; Formica, D.; Setola, R.; Schena, E. A multi-point heart rate monitoring using a soft wearable system based on fiber optic technology. Sci. Rep. 2021, 11, 21162. [Google Scholar] [CrossRef]
- Huang, W.C.; Li, C.; Gao, L.F.; Zhang, Y.; Wang, Y.Z.; Huang, Z.Y.N.; Chen, T.T.; Hu, L.P.; Zhang, H. Emerging black phosphorus analogue nanomaterials for high-performance device applications. J. Mater. Chem. C 2020, 8, 1172–1197. [Google Scholar] [CrossRef]
- Guillermain, E.; Kuhnhenn, J.; Ricci, D.; Weinand, U. Macro-bending influence on radiation induced attenuation in optical fibres. In Proceedings of the 14th European Conference on Radiation and its Effects on Components and Systems (RADECS), Oxford, UK, 23–27 September 2013; IEEE: Piscataway Township, NJ, USA, 2013. [Google Scholar]
- Ashfaq, A.; Chen, Y.; Yao, K.; Sun, G.; Yu, J. Macro Bending Effect in Optical Fiber Composite Low Voltage Cable. In Proceedings of the 2nd IEEE International Conference on Dielectrics (ICD), Budapest, Hungary, 1–5 July 2018; IEEE: Piscataway Township, NJ, USA, 2018. [Google Scholar]
- Guo, Z.; Chu, F.; Fan, J.; Zhang, Z.; Li, G.; Song, X. Macro-Bending Biconical Tapered Plastic Optical Fiber Humidity Sensor. In Proceedings of the Conference on Fiber Optic Sensing and Optical Communication/International Symposium on Optoelectronic Technology and Application (OTA)/Annual Conference of the Chinese-Society-for-Optical-Engineering (CSOE), Beijing, China, 22–24 May 2018. [Google Scholar]
- Davis, C.; Philips, A.; Norman, P.; Rajic, N. Effect of Gauge Length on Embedded Fibre Bragg Grating Sensor Response in Woven Fibre Composites. In Proceedings of the Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Portland, OR, USA, 26–29 March 2017. [Google Scholar]
- Purnamaningsih, R.W.; Widyakinanti, A.; Dhia, A.; Gumelar, M.R.; Widianto, A.; Randy, M.; Soedibyo, H. Respiratory Monitoring System Based on Fiber Optic Macro Bending. In Proceedings of the 2nd International Symposium of Biomedical Engineering (ISBE), Bali, Indonesia, 25–26 July 2018. [Google Scholar]
- Jiao, X.; Zhang, H.; Zhang, X.; Li, H.; Wei, J.; Wang, Z.; Xi, L.; Zhang, W.; Tang, X. Performance of circular photonic crystal fiber transmitting orbital angular momentum modes under macro-bending. J. Opt. 2019, 21, 065703. [Google Scholar] [CrossRef]
- Arif, N.A.A.M.; Burhanuddin, D.D.; Shaari, S.; Ehsan, A.A. Bend loss fiber optics design based on sinusoidal and ellipse configurations. Opt. Appl. 2021, 51, 309–320. [Google Scholar] [CrossRef]
- Pang, Y.-N.; Liu, B.; Liu, J.; Wan, S.P.; Wu, T.; He, X.; Yuan, J.; Zhou, X.; Long, K.; Wu, Q. Wearable Optical Fiber Sensor Based on a Bend Singlemode-Multimode-Singlemode Fiber Structure for Respiration Monitoring. IEEE Sens. J. 2021, 21, 4610–4617. [Google Scholar] [CrossRef]
- Chen, H.; Agrawal, S.; Dangi, A.; Wible, C.; Osman, M.; Abune, L.; Jia, H.; Rossi, R.; Wang, Y.; Kothapalli, S.-R. Optical-Resolution Photoacoustic Microscopy Using Transparent Ultrasound Transducer. Sensors 2019, 19, 5470. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, E.; Ferreira, M.; dos Santos, M.; Suzuki, C.K. Flexible Optical Fiber Bending Transducer for Application in Glove-Based Sensors. IEEE Sens. J. 2014, 14, 3631–3636. [Google Scholar] [CrossRef]
- D’Mello, Y.; Skoric, J.; Moukarzel, L.; Hakim, S.; Plant, D.V. Wearable Fiber Optic Sensors for Biomechanical Sensing via Joint Angle Detection. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway Township, NJ, USA, 2019; pp. 3221–3225. [Google Scholar]
- Li, J.; Liu, J.; Li, C.; Zhang, H.; Li, Y. Wearable Wrist Movement Monitoring Using Dual Surface-Treated Plastic Optical Fibers. Materials 2020, 13, 3291. [Google Scholar] [CrossRef] [PubMed]
- Leal-Junior, A.G.; Frizera, A.; Vargas-Valencia, L.; dos Santos, W.M.; Bo, A.P.L.; Siqueira, A.A.G.; Pontes, M.J. Polymer Optical Fiber Sensors in Wearable Devices: Toward Novel Instrumentation Approaches for Gait Assistance Devices. IEEE Sens. J. 2018, 18, 7085–7092. [Google Scholar] [CrossRef]
Working Mechanism | Application | Packaging Materials | Characteristics | REF |
---|---|---|---|---|
FBG | Heart rate monitor | Flexible silicone rubber matrix | Multiple FBG matrices; multipoint measurement | [37] |
FBG | Breath | Silicone rubber | Sensitivity is always higher than 0.66 and 0.35 | [62] |
FBG | Breath | Silicone | Simple structure; cost is low | [50] |
FBG | Breath | Elastic fabric | The bias of 0.01 s | [51] |
FBG | Monitor neck movement and breathing | Silicone matrix | The percentage error is 1.90% | [45] |
FBG | Monitor chest and abdominal breathing | Elastic belt | Respiratory pattern reconstruction Multipoint sensing | [22] |
FBG | Breath | Silicone; PI coating | The average error ranged from 0.33% to 3.38% | [47] |
FBG | Breathing | Epoxy resin | Low cost; easy to wear | [95] |
FBG | Joint angle | Elastic fabric | The sensitivity is 0.5 pm/° | [29] |
FBG | Knee joint | Bare fiber | Sensitivity of 0.012 nm/° | [46] |
FBG | Lumbar spine | Silicone | First wearable lumbar spine monitoring | [36] |
FBG | Knee joint | Epoxy resin | The horse cantilever | [100] |
FBG | Finger joint angle | Elastic fabric | Angular resolution is 0.1° | [70] |
FBG | Finger joint angle | Rectangular epoxy resin | The maximum angle error is 4.6° | [42] |
FBG | Finger joint angle | PVC | The average error is 0.8° | [48] |
FBG | Blood pressure | Elastic fabric | Many positions; not affected by the height | [34] |
FBG | Body temperature | Unsaturated polymer resin | Increased sensitivity by 15 times | [5] |
Working Mechanism | Application | Packagin Materials | Characteristics | Ref. |
---|---|---|---|---|
Macroscopic bending | Finger joint | Silica gel | Sensitivity 1.80 ° | [114] |
Macroscopic bending | Elbow joint | Polyethylene | The mean difference is 5.31° and the standard deviation is 3.71° | [64] |
Macroscopic bending | Elbow joint | Elastomers and gels | The standard deviation error is 3.525° | [115] |
Optical fiber and mirror | Elbow and wrist | POF | Resolution is 0.338° | [33] |
Macroscopic bending | Wrist | POF | The sensitivity is about 0.0176/° | [116] |
Macroscopic bending | Breathe | Bare leak | Low cost and easy fabrication | [110] |
Macroscopic bending | Breathe | Bare leak | The margin of error is 0.25% | [12] |
Macroscopic bending | Breathe | D-shaped POF | Low cost and simple design | [24] |
Macroscopic bending | Gait-assist insole | Fluoridated polymer cladding and polyethylene cladding | POF curvature sensor has low angle error | [117] |
Macroscopic bending | Gait-assist insole | Fluoridated polymer cladding and polyethylene cladding | Error less than 3.4% | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, C.; Zheng, T.; Wu, H.; Wu, Q.; Wang, Y. Wearable Optical Fiber Sensors in Medical Monitoring Applications: A Review. Sensors 2023, 23, 6671. https://doi.org/10.3390/s23156671
Zhang X, Wang C, Zheng T, Wu H, Wu Q, Wang Y. Wearable Optical Fiber Sensors in Medical Monitoring Applications: A Review. Sensors. 2023; 23(15):6671. https://doi.org/10.3390/s23156671
Chicago/Turabian StyleZhang, Xuhui, Chunyang Wang, Tong Zheng, Haibin Wu, Qing Wu, and Yunzheng Wang. 2023. "Wearable Optical Fiber Sensors in Medical Monitoring Applications: A Review" Sensors 23, no. 15: 6671. https://doi.org/10.3390/s23156671