A Review of Gas Sensors for CO2 Based on Copper Oxides and Their Derivatives
Abstract
:1. Introduction
2. Market Overview and Present Research
2.1. Optical Sensors
2.2. Acoustic Sensor
2.3. Electrochemical Sensors
3. Gas Sensing Mechanism
4. Characterization of Sensor Performance
4.1. Sensor Response
4.2. Change in Work Function
5. Cu Oxides
5.1. Structural Configuration
5.2. Deposition Techniques for Copper Oxides
5.2.1. Spray Pyrolysis
5.2.2. Sputtering
5.2.3. Thermal Evaporation
5.2.4. Screen Printing
5.2.5. Hydrothermal Method
5.2.6. Sol–Gel
5.3. Doping
5.3.1. Surface Loading
- Influence of noble metals as dopants
- Influence of metal oxides as dopants
5.3.2. Bulk Integration
6. Copper Oxide and Its Derivatives for CO2 Gas Sensing
6.1. CuO
- Resistive sensors
- Work function sensors
6.2. BaTiO3/CuO
- Resistive sensors
- Impedance sensors
6.2.1. BaTiO3/CuO Doped with Metals and Metal Oxides
- Resistive sensors
- Impedance sensors
6.2.2. BaTiO3/CuO Doped LaCl3 or La2O
- Impedance sensors
6.3. Cu/Fe Oxides
- Resistive sensors
- Impedance sensors
6.4. NixCu1−xFe2O4
- Resistive sensors
6.5. ZnxCu1−xFe2O4
- Resistive sensors
6.6. CuO/ZnO
- Resistive sensors
- Work function sensors
6.7. CuO/TiO2
- Resistive sensors
6.8. CuO/SnO2
- Resistive sensors
6.9. CuxO/NiO
- Resistive sensors
6.10. Graphene
- Resistive sensors
6.11. CuO/Ba
- Resistive sensors
6.12. CuO/Na
- Resistive sensors
6.13. CuO/Au
- Resistive sensors
Type | Morphology | Method | Operating Temperature (°C) | Relative Humidity (%) | CO2 (ppm) | Sensor Response | Equation | References | |
---|---|---|---|---|---|---|---|---|---|
CuO | |||||||||
Resistive sensor | Thick film 12.7 µm | Sputtering | 160 | Not defined | Not defined | 5.1 | Not defined | [128] | |
Thin film 200 nm | Thermal evaporation | 25 | Not defined | Not defined | 14% | [74] | |||
Thick film 2 µm | Spray pyrolysis | 25 | Not defined | 100 | 3.5% | [75] | |||
CuO nanowires 10–50 nm diameter | Thermal evaporation | 25 | Not defined | 5 L/min | 1.01 | [73] | |||
Thin film 240 nm | Sol–gel | 250 | Not defined | 8354 | 10% | [129] | |||
275 | 15% | ||||||||
300 | 21% | ||||||||
Thin film 240 nm | Sol–gel | 300 | Not defined | 39,300 | 114% | [129] | |||
Work function sensor | CuO-NP | Drop coating | 25 | 45 | 4000 | 86 mV | [130] | ||
60 | 68 mV | ||||||||
50 | 45 | 130 mV | |||||||
65 | 45 | 95 mV | |||||||
CuO-NP 100 µm | Drop coating | 25 | 0 | 4000 | 42 mV | [79] | |||
30 | 91 mV | ||||||||
45 | 86 mV | ||||||||
CuO | |||||||||
Work function sensor | CuO-NP 100 µm | Drop coating | 25 | 0 | 4000 | 42 mV | [180] | ||
20 | 97 mV | ||||||||
CuO-NP 3 µm | Drop coating | 25 | 0 | 4000 | 15 mV | [180] | |||
20 | 41 mV | ||||||||
BaTiO3/CuO | |||||||||
Resistive sensor | Thin film | RF sputtering | 250 | Not defined | 500 | 35% | [136] | ||
Sintered pellet | Sintering | 420 | Not defined | 5000 | 1.26 | [131] | |||
Impedance sensor | Thin film | RF sputtering | 300 | 40 | 5000 | 6% | [137] | ||
BaTiO3/CuO doped with Ag | |||||||||
Resistive sensor | Sintered pellet 1% Ag | Sintering | 430 | Not defined | 5000 | 1.59 | [131] | ||
Thin film 1% Ag | RF sputtering | 250 | Not defined | 350 | 14% | [136] | |||
400 | 21% | ||||||||
450 | 38% | ||||||||
500 | 59% | ||||||||
1000 | 70% | ||||||||
BaTiO3/CuO doped with Ag | |||||||||
Impedance sensor | Multilayer 35 nm BaTiO3/CuO with silver layers between | 0 (at% Ag)) | RF magnetron sputtering | 300 | 40 | 5000 | 9% | [134,135] | |
1.5 (at% Ag) | 14.5% | ||||||||
2.26 (at% Ag) | 18% | ||||||||
4.52 (at% Ag) | 11% | ||||||||
Multilayer 35 nm BaTiO3/CuO with silver layers between | 0 (at% Ag)) | RF magnetron sputtering | 300 | 40 | 5000 | 18% | [134,135] | ||
1.5 (at% Ag) | 25% | ||||||||
2.26 (at% Ag) | 27% | ||||||||
4.52 (at% Ag) | 18% | ||||||||
Thin film (150 nm) | RF sputtering | 300 | Not defined | 1000 | 70% | [76] | |||
Thin film (150 nm) | RF sputtering | 300 | Not defined | 1000 | 95% | [76] | |||
BaTiO3/CuO doped with LaCl3 or La2O3 | |||||||||
Impedance sensor | Thick film 2–5 µm with 10 wt% LaCl3 | Screen printing | 400 | Not defined | 10,000 | 1.28 | [49] | ||
Thick film 2–5 µm with 10 wt% La2O3 | Screen printing | 400 | Not defined | 10,000 | 1.05 | [49] | |||
CuO/CuFe2O4 | |||||||||
Resistive sensor | Thick film | Co-precipitation (paste) | 350 | 0 | 5000 | 10% | [144] | ||
Impedance sensor | Thin film (50 nm) | RF sputtering | 250 | 0 | 5000 | 40% | [145] | ||
Thin film (300 nm) | RF sputtering | 370 | 0 | 5000 | 15% | [145] | |||
CuxFe3-xO4 | |||||||||
Impedance sensor | Thin film | RF sputtering | 200 | 0 | 5000 | 27% | [77] | ||
Thin film | RF sputtering | 250 | 0 | 5000 | 48% | [86] | |||
NixCu1−xFe2O4 | |||||||||
Resistive sensor | Thin film | Sol–gel | RT | Not defined | 2000 | 1.17 | [148] | ||
ZnxCu1−xFe2O | |||||||||
Resistive sensor | Thin film | Sol–gel | RT | Not defined | 2000 | 2 | [153] | ||
SnO2/CuO | |||||||||
Resistive sensor | Thin film 20 nm | Sol–gel | 400 | Not defined | 250,000 | 1.8 | [168] | ||
500,000 | 2.2 | ||||||||
750,000 | 2.7 | ||||||||
1,000,000 | 3.1 | ||||||||
SnO2/CuO with 0.5 wt% Ag | |||||||||
Resistive sensor | Nanospheres | Hydrothermal process | 300 | Not defined | 10,000 | 72% | [169] | ||
100,000 | 76% | ||||||||
250,000 | 81% | ||||||||
500,000 | 83% | ||||||||
1,000,000 | 92% | ||||||||
ZnO/CuO | |||||||||
Work function sensor | Thin film (MR 0.3) | Sol–gel dip-coating | 31 | 78 | 100 | 4% | [155] | ||
500 | 10% | ||||||||
1000 | 22% | ||||||||
10,000 | 31% | ||||||||
Thin film (MR 0.5) | Sol–gel dip-coating | 31 | 78 | 100 | 6% | ||||
500 | 22% | ||||||||
1000 | 38% | ||||||||
10,000 | 42% | ||||||||
Thin film (MR 0.7) | Sol–gel dip-coating | 31 | 78 | 100 | 16% | ||||
500 | 30% | ||||||||
1000 | 42% | ||||||||
10,000 | 48% | ||||||||
Resistive sensor | Bilayer thin film | Spin coating | 225 | Not defined | 2500 | 21% | [158] | ||
250 | 18% | ||||||||
275 | 21% | ||||||||
300 | 28% | ||||||||
325 | 36% | ||||||||
350 | 47% | ||||||||
Nanorods | Hydrothermal process | RT | Not defined | 150 | 1.4% | [156] | |||
250 | 2% | ||||||||
500 | 3.8% | ||||||||
750 | 6.1% | ||||||||
1000 | 9.7% | ||||||||
Nanoflowers | 1 wt% Ag | RF sputtering | RT | 52 | 1000 | 11.5% | [160] | ||
2 wt% Ag | 18.4% | ||||||||
3 wt% Ag | 8.1% | ||||||||
5 wt% Ag | 4.5% | ||||||||
Nanoflowers With Ag 2 wt% | RF sputtering | RT | 52 | 150 | 7.53% | [160] | |||
250 | 10.6% | ||||||||
500 | 12.46% | ||||||||
750 | 15.2% | ||||||||
1000 | 18.4% | ||||||||
Nanoflowers with 2 wt% Ag | RF sputtering | RT | 32 | 750 | 14.8% | [160] | |||
52 | 15.2% | ||||||||
62 | 15.5% | ||||||||
72 | 15.9% | ||||||||
CuO-NPs with ZnO | Drop coating | 300 | 30 | 1000 | 12% | [159] | |||
2000 | 20% | ||||||||
3000 | 30% | ||||||||
4000 | 35% | ||||||||
Graphene oxide/cupric oxide | |||||||||
Resistive sensor | - | Spin coating | 100 | Not defined | 250 | 646% | [175] | ||
500 | 885% | ||||||||
750 | 963% | ||||||||
CuxO-PEG/NiO | |||||||||
Resistive sensor | Nanostructured matrix (10 wt% Ni-doped) | Microwave grown | 250 | Not defined | 1000 | 30 | Not defined | [170] | |
CuO/TiO2 | |||||||||
Resistive sensor | Thick film | Screen printing | RT | Not defined | 300 | 0.6 | Not defined | [163] | |
600 | 2 | ||||||||
900 | 2.5 | ||||||||
CuO/NPs | |||||||||
Resistive sensor | CuO with 4 mol% Ba | SILAR | RT | Not defined | 100 sccm | 2.97% | [176] | ||
CuO with 6 mol% Ba | SILAR | RT | Not defined | 100 sccm | 9.4% | [176] | |||
CuO with 2% Na | SILAR | RT | Not defined | 100 sccm | 12.8% | [177] | |||
CuO with Au | Drop coating | 300 | 50 | 2000 | 365% | [179] |
7. Toxicity of CuO as a Nanomaterial
8. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Household Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 23 March 2023).
- US EPA. Introduction to Indoor Air Quality|US EPA. Available online: https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality (accessed on 24 March 2023).
- Navale, Y.H.; Navale, S.T.; Stadler, F.J.; Ramgir, N.S.; Debnath, A.K.; Gadkari, S.C.; Gupta, S.K.; Aswal, D.K.; Patil, V.B. Thermally evaporated copper oxide films: A view of annealing effect on physical and gas sensing properties. Ceram. Int. 2017, 43, 7057–7064. [Google Scholar] [CrossRef]
- Molina, A.; Escobar-Barrios, V.; Oliva, J. A review on hybrid and flexible CO2 gas sensors. Synth. Met. 2020, 270, 116602. [Google Scholar] [CrossRef]
- Neethirajan, S.; Jayas, D.S.; Sadistap, S. Carbon Dioxide (CO2) Sensors for the Agri-food Industry—A Review. Food Bioprocess Technol. 2009, 2, 115–121. [Google Scholar] [CrossRef]
- Tan, E.S.; Slaughter, D.C.; Thompson, J.F. Freeze damage detection in oranges using gas sensors. Postharvest Biol. Technol. 2005, 35, 177–182. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed]
- Sivaramakrishnan, S.; Rajamani, R.; Smith, C.S.; McGee, K.A.; Mann, K.R.; Yamashita, N. Carbon nanotube-coated surface acoustic wave sensor for carbon dioxide sensing. Sens. Actuators B Chem. 2008, 132, 296–304. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Song, Z.; Ye, W.; Fan, Z. Smart gas sensor arrays powered by artificial intelligence. J. Semicond. 2019, 40, 111601. [Google Scholar] [CrossRef]
- Araújo, T.; Silva, L.; Aguiar, A.; Moreira, A. Calibration Assessment of Low-Cost Carbon Dioxide Sensors Using the Extremely Randomized Trees Algorithm. Sensors 2023, 23, 6153. [Google Scholar] [CrossRef]
- Sales-Lérida, D.; Bello, A.J.; Sánchez-Alzola, A.; Martínez-Jiménez, P.M. An Approximation for Metal-Oxide Sensor Calibration for Air Quality Monitoring Using Multivariable Statistical Analysis. Sensors 2021, 21, 4781. [Google Scholar] [CrossRef] [PubMed]
- Carbon Dioxide—IDLH|NIOSH|CDC. Available online: https://www.cdc.gov/niosh/idlh/124389.html (accessed on 22 July 2024).
- Khoury, C. Residential Indoor Air Quality Guidelines. Available online: https://www.canada.ca/en/health-canada/services/air-quality/residential-indoor-air-quality-guidelines.html#a1 (accessed on 23 March 2023).
- Hooshmand, S.; Kassanos, P.; Keshavarz, M.; Duru, P.; Kayalan, C.I.; Kale, İ.; Bayazit, M.K. Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. Sensors 2023, 23, 8648. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Ye, W.; Chen, Z.; Chen, Z.; Li, M.; Tang, W.; Wang, C.; Wan, Z.; Poddar, S.; Wen, X.; et al. Wireless Self-Powered High-Performance Integrated Nanostructured-Gas-Sensor Network for Future Smart Homes. ACS Nano 2021, 15, 7659–7667. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, P.K.; Chandu, B.; Puvvada, N. Recent Advances in Nanostructured Materials for Application as Gas Sensors. ACS Omega 2024, 9, 3092–3122. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Kilani, M.; Mao, G. Recent Advances in Integrating 1D Nanomaterials into Chemiresistive Gas Sensor Devices. Adv Mater. Technol. 2023, 8, 2202038. [Google Scholar] [CrossRef]
- Rezk, M.Y.; Sharma, J.; Gartia, M.R. Nanomaterial-Based CO2 Sensors. Nanomaterials 2020, 10, 2251. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Nawaz, A.; Nawaz, S.; Shad, N.A.; Sajid, M.M.; Javed, Y. Nanomaterial-based gas sensor for environmental science and technology. In Nanofabrication for Smart Nanosensor Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 229–252. ISBN 9780128207024. [Google Scholar]
- Liang, J.-G.; Jiang, Y.; Wu, J.-K.; Wang, C.; von Gratowski, S.; Gu, X.; Pan, L. Multiplex-gas detection based on non-dispersive infrared technique: A review. Sens. Actuators A Phys. 2023, 356, 114318. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Zainab, Y.; Nizar, H.; Ahsanul, K.; Zaiki, A. Gas Sensors A Review. Sens. Transducers 2014, 168, 61–75. [Google Scholar]
- Jia, X.; Roels, J.; Baets, R.; Roelkens, G. A Miniaturised, Fully Integrated NDIR CO2 Sensor On-Chip. Sensors 2021, 21, 5347. [Google Scholar] [CrossRef] [PubMed]
- Perkins, J.; Gholipour, B. Optoelectronic Gas Sensing Platforms: From Metal Oxide Lambda Sensors to Nanophotonic Metamaterials. Adv. Photonics Res. 2021, 2, 2000141. [Google Scholar] [CrossRef]
- Makhdoumi Akram, M.; Nikfarjam, A.; Hajghassem, H.; Ramezannezhad, M.; Iraj, M. Low cost and miniaturized NDIR system for CO2 detection applications. SR 2020, 40, 637–646. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 12004. [Google Scholar] [CrossRef]
- Cubic. Cubic Industrial Grade NDIR Gas Sensor. Available online: https://en.gassensor.com.cn/IndustryGasSensor/info_itemid_126.html (accessed on 23 March 2023).
- Miyazaki, C.M.; Shimizu, F.M.; Ferreira, M. Surface Plasmon Resonance (SPR) for Sensors and Biosensors. In Nanocharacterization Techniques; Elsevier: Amsterdam, The Netherlands, 2017; pp. 183–200. ISBN 9780323497787. [Google Scholar]
- Camarca, A.; Varriale, A.; Capo, A.; Pennacchio, A.; Calabrese, A.; Giannattasio, C.; Murillo Almuzara, C.; D’Auria, S.; Staiano, M. Emergent Biosensing Technologies Based on Fluorescence Spectroscopy and Surface Plasmon Resonance. Sensors 2021, 21, 906. [Google Scholar] [CrossRef] [PubMed]
- Topor, C.-V.; Puiu, M.; Bala, C. Strategies for Surface Design in Surface Plasmon Resonance (SPR) Sensing. Biosensors 2023, 13, 465. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.R.; Walt, D.R. Fluorescence-based fibre optic arrays: A universal platform for sensing. Chem. Soc. Rev. 2003, 32, 203–214. [Google Scholar] [CrossRef]
- Wysokiński, K.; Napierała, M.; Stańczyk, T.; Lipiński, S.; Nasiłowski, T. Study on the Sensing Coating of the Optical Fibre CO2 Sensor. Sensors 2015, 15, 31888–31903. [Google Scholar] [CrossRef] [PubMed]
- Cano Perez, J.L.; Gutiérrez-Gutiérrez, J.; Perezcampos Mayoral, C.; Pérez-Campos, E.L.; Del Socorro Pina Canseco, M.; Tepech Carrillo, L.; Mayoral, L.P.-C.; Vargas Treviño, M.; Apreza, E.L.; Rojas Laguna, R. Fiber Optic Sensors: A Review for Glucose Measurement. Biosensors 2021, 11, 61. [Google Scholar] [CrossRef]
- Hoyt, A.E.; Ricco, A.J.; Bartholomew, J.W.; Osbourn, G.C. SAW sensors for the room-temperature measurement of CO2 and relative humidity. Anal. Chem. 1998, 70, 2137–2145. [Google Scholar] [CrossRef]
- Mandal, D.; Banerjee, S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.; Cai, H.; Mohammad Ali, M.; Tian, X.; Tao, L.; Yang, Y.; Ren, T. Surface acoustic wave devices for sensor applications. J. Semicond. 2016, 37, 21001. [Google Scholar] [CrossRef]
- Spirig, J.V.; Ramamoorthy, R.; Akbar, S.A.; Routbort, J.L.; Singh, D.; Dutta, P.K. High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference. Sens. Actuators B Chem. 2007, 124, 192–201. [Google Scholar] [CrossRef]
- Sosada-Ludwikowska, F.; Reiner, L.; Egger, L.; Lackner, E.; Krainer, J.; Wimmer-Teubenbacher, R.; Singh, V.; Steinhauer, S.; Grammatikopoulos, P.; Koeck, A. Adjusting surface coverage of Pt nanocatalyst decoration for selectivity control in CMOS-integrated SnO2 thin film gas sensors. Nanoscale Adv. 2024, 6, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Mutinati, G.C.; Brunet, E.; Koeck, A.; Steinhauer, S.; Yurchenko, O.; Laubender, E.; Urban, G.; Siegert, J.; Rohracher, K.; Schrank, F.; et al. Optimization of CMOS Integrated Nanocrystalline SnO2 Gas Sensor Devices with Bimetallic Nanoparticles. Procedia Eng. 2014, 87, 787–790. [Google Scholar] [CrossRef]
- Chiu, S.-W.; Tang, K.-T. Towards a chemiresistive sensor-integrated electronic nose: A review. Sensors 2013, 13, 14214–14247. [Google Scholar] [CrossRef] [PubMed]
- Mulmi, S.; Thangadurai, V. Editors’ Choice—Review—Solid-State Electrochemical Carbon Dioxide Sensors: Fundamentals, Materials and Applications. J. Electrochem. Soc. 2020, 167, 37567. [Google Scholar] [CrossRef]
- Youichi, S.; Nami, Y. Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode. Sens. Actuators B Chem. 2000, 64, 102–106. [Google Scholar] [CrossRef]
- Hunter, G.W.; Akbar, S.; Bhansali, S.; Daniele, M.; Erb, P.D.; Johnson, K.; Liu, C.-C.; Miller, D.; Oralkan, O.; Hesketh, P.J.; et al. Editors’ Choice—Critical Review—A Critical Review of Solid State Gas Sensors. J. Electrochem. Soc. 2020, 167, 37570. [Google Scholar] [CrossRef]
- McGrath, M.J.; Scanaill, C.N. Sensor Technologies: Healthcare, Wellness and Environmental Applications; Apress: New York, NY, USA, 2014; ISBN 9781430260141. [Google Scholar]
- Kalyakin, A.; Volkov, A.; Dunyushkina, L. Solid-Electrolyte Amperometric Sensor for Simultaneous Measurement of CO and CO2 in Nitrogen. Appl. Sci. 2022, 12, 4515. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Liu, Z.; Li, L.; Shi, C.; Qin, H.; Hu, J. CO2-sensing properties and mechanism of nano-SnO2 thick-film sensor. Sens. Actuators B Chem. 2016, 227, 73–84. [Google Scholar] [CrossRef]
- Saad, R.; Gamal, A.; Zayed, M.; Ahmed, A.M.; Shaban, M.; BinSabt, M.; Rabia, M.; Hamdy, H. Fabrication of ZnO/CNTs for Application in CO2 Sensor at Room Temperature. Nanomaterials 2021, 11, 3087. [Google Scholar] [CrossRef]
- Mardare, D.; Cornei, N.; Mita, C.; Florea, D.; Stancu, A.; Tiron, V.; Manole, A.; Adomnitei, C. Low temperature TiO2 based gas sensors for CO2. Ceram. Int. 2016, 42, 7353–7359. [Google Scholar] [CrossRef]
- Lee, M.S.; Meyer, J.U. A new process for fabricating CO2-sensing layers based on BaTiO3 and additives. Sens. Actuators B Chem. 2000, 68, 293–299. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, K.; Liu, K.; Xu, J.; Zheng, Z. Metal oxide resistive sensors for carbon dioxide detection. Coord. Chem. Rev. 2022, 472, 214758. [Google Scholar] [CrossRef]
- Tanvir, N.B.; Wilbertz, C.; Steinhauer, S.; Köck, A.; Urban, G.; Yurchenko, O. Work Function Based CO2 Gas Sensing Using Metal Oxide Nanoparticles at Room Temperature. Mater. Today Proc. 2015, 2, 4190–4195. [Google Scholar] [CrossRef]
- Tatsumi, I.; Shogo, M. Capacitive Type Gas Sensors. J. Electroceram. 1998, 2, 215–228. [Google Scholar] [CrossRef]
- Rheaume, J.M.; Pisano, A.P. A review of recent progress in sensing of gas concentration by impedance change. Ionics 2011, 17, 99–108. [Google Scholar] [CrossRef]
- Balasubramani, V.; Chandraleka, S.; Rao, T.S.; Sasikumar, R.; Kuppusamy, M.R.; Sridhar, T.M. Review—Recent Advances in Electrochemical Impedance Spectroscopy Based Toxic Gas Sensors Using Semiconducting Metal Oxides. J. Electrochem. Soc. 2020, 167, 37572. [Google Scholar] [CrossRef]
- Ersöz, B.; Schmitt, K.; Wöllenstein, J. CO2 gas sensing with an electrolyte-gated transistor using impedance spectroscopy. Sens. Actuators B Chem. 2021, 334, 129598. [Google Scholar] [CrossRef]
- Maier, C.; Leitgeb, V.; Egger, L.; Köck, A. Size-Dependent Thresholds in CuO Nanowires: Investigation of Growth from Microstructured Thin Films for Gas Sensing. Nanomaterials 2024, 14, 1207. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, S.; Brunet, E.; Maier, T.; Mutinati, G.C.; Köck, A.; Freudenberg, O.; Gspan, C.; Grogger, W.; Neuhold, A.; Resel, R. Gas sensing properties of novel CuO nanowire devices. Sens. Actuators B Chem. 2013, 187, 50–57. [Google Scholar] [CrossRef]
- Steinhauer, S.; Brunet, E.; Maier, T.; Mutinati, G.C.; Köck, A. Suspended CuO nanowires for ppb level H2S sensing in dry and humid atmosphere. Sens. Actuators B Chem. 2013, 186, 550–556. [Google Scholar] [CrossRef]
- Steinhauer, S.; Singh, V.; Cassidy, C.; Gspan, C.; Grogger, W.; Sowwan, M.; Köck, A. Single CuO nanowires decorated with size-selected Pd nanoparticles for CO sensing in humid atmosphere. Nanotechnology 2015, 26, 175502. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, S. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors 2021, 9, 51. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Dai, J.; Ogbeide, O.; Macadam, N.; Sun, Q.; Yu, W.; Li, Y.; Su, B.-L.; Hasan, T.; Huang, X.; Huang, W. Printed gas sensors. Chem. Soc. Rev. 2020, 49, 1756–1789. [Google Scholar] [CrossRef]
- Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I. Nanostructured Metal Oxide-Based Acetone Gas Sensors: A Review. Sensors 2020, 20, 3096. [Google Scholar] [CrossRef]
- Ahmed, S.; Sinha, S.K. Studies on nanomaterial-based p-type semiconductor gas sensors. Environ. Sci. Pollut. Res. Int. 2023, 30, 24975–24986. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Singh, M.; Comini, E. One-Dimensional Nanostructured Oxide Chemoresistive Sensors. Langmuir 2020, 36, 6326–6344. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Fan, H.; Tian, H.; Fang, J.; Li, Q. Gas-sensing and electrical properties of perovskite structure p-type barium-substituted bismuth ferrite. RSC Adv. 2015, 5, 29618–29623. [Google Scholar] [CrossRef]
- Barsan, N.; Simion, C.; Heine, T.; Pokhrel, S.; Weimar, U. Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors. J. Electroceram. 2010, 25, 11–19. [Google Scholar] [CrossRef]
- Moumen, A.; Kumarage, G.C.W.; Comini, E. P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications. Sensors 2022, 22, 1359. [Google Scholar] [CrossRef] [PubMed]
- Hübner, M.; Simion, C.E.; Tomescu-Stănoiu, A.; Pokhrel, S.; Bârsan, N.; Weimar, U. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens. Actuators B Chem. 2011, 153, 347–353. [Google Scholar] [CrossRef]
- McNaught, A.; Wilkinson, A. The IUPAC Compendium of Chemical Terminology; Gold, V., Ed.; International Union of Pure and Applied Chemistry (IUPAC): Research Triangle Park, NC, USA.
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [PubMed]
- Kasian, P.; Pukird, S. Gas Sensing Properties of CuO Nanostructures Synthesized by Thermal Evaporation of Copper Metal Plate. Adv. Mater. Res 2010, 93–94, 316–319. [Google Scholar] [CrossRef]
- Maki, S.A.; Mahmoud, O.A. The thickness effect of CuO thin films on electrical and gas sensing properties. J. Multidiscip. Eng. Sci. Technol. 2017, 4, 7652–7658. [Google Scholar]
- Abdelmounaïm, C.; Amara, Z.; Maha, A.; Mustapha, D. Effects of molarity on structural, optical, morphological and CO2 gas sensing properties of nanostructured copper oxide films deposited by spray pyrolysis. Mater. Sci. Semicond. Process. 2016, 43, 214–221. [Google Scholar] [CrossRef]
- Shwetha, H.R.; Sharath, S.M.; Guruprasad, B.; Rudraswamy, S.B. MEMS based metal oxide semiconductor carbon dioxide gas sensor. Micro Nano Eng. 2022, 16, 100156. [Google Scholar] [CrossRef]
- Oudrhiri-Hassani, F.; Presmanes, L.; Barnabe, A.; Kammouni, A.; Tailhades, P. CO2 sensing characteristics of CuO/Spinel thin films deposited on micro-heater. J. Mater. Environ. Sci. 2015, 6, 3496–3500. [Google Scholar]
- Oprea, A.; Bârsan, N.; Weimar, U. Work function changes in gas sensitive materials: Fundamentals and applications. Sens. Actuators B Chem. 2009, 142, 470–493. [Google Scholar] [CrossRef]
- Tanvir, N.B.; Yurchenko, O.; Laubender, E.; Urban, G. Investigation of low temperature effects on work function based CO2 gas sensing of nanoparticulate CuO films. Sens. Actuators B Chem. 2017, 247, 968–974. [Google Scholar] [CrossRef]
- Rydosz, A. The Use of Copper Oxide Thin Films in Gas-Sensing Applications. Coatings 2018, 8, 425. [Google Scholar] [CrossRef]
- Sanni, H.; Popoola, A.S.; Tijani, J.O.; Jacob, J.O.; Bankole, M.T.; Abdulkareem, A.S. Influence of synthesis parameters on the morphology, purity and phases type of Copper oxide nanoparticles. Ilorin J. Sci. 2019, 6, 42–66. [Google Scholar] [CrossRef]
- Lyemperumal, S.K.; Fenton, T.G.; Gillingham, S.L.; Carl, A.D.; Grimm, R.L.; Li, G.; Deskins, N.A. The stability and oxidation of supported atomic-size Cu catalysts in reactive environments. J. Chem. Phys. 2019, 151, 54702. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 2014, 60, 208–337. [Google Scholar] [CrossRef]
- Jagpreet, S.; Gurjas, K.; Rawat, M. A Brief Review on Synthesis and Characterization of Copper Oxide Nanoparticles and its Applications. J. Bioelectron. Nanotechnol. 2016, 1, 9. [Google Scholar] [CrossRef]
- Perumal Srinivasa, V.; Sivalingam, D.; Beri Gopalakrishnan, J.; Bosco Balaguru Rayappan, J. Nanostructured Copper Oxide Thin Film for Ethanol Vapor Sensing. J. Appl. Sci. 2012, 12, 1656–1660. [Google Scholar] [CrossRef]
- Chapelle, A.; Oudrhiri-Hassani, F.; Presmanes, L.; Barnabé, A.; Tailhades, P. CO2 sensing properties of semiconducting copper oxide and spinel ferrite nanocomposite thin film. Appl. Surf. Sci. 2010, 256, 4715–4719. [Google Scholar] [CrossRef]
- Volanti, D.P.; Felix, A.A.; Orlandi, M.O.; Whitfield, G.; Yang, D.-J.; Longo, E.; Tuller, H.L.; Varela, J.A. The Role of Hierarchical Morphologies in the Superior Gas Sensing Performance of CuO-Based Chemiresistors. Adv. Funct. Mater. 2013, 23, 1759–1766. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, C.; Li, L.; Du, C.; Li, X.; Kang, X.-F.; Chen, W. CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance. Talanta 2018, 188, 41–49. [Google Scholar] [CrossRef]
- Sivaperuman, K.; Thomas, A.; Thangavel, R.; Thirumalaisamy, L.; Palanivel, S.; Pitchaimuthu, S.; Ahsan, N.; Okada, Y. Binary and ternary metal oxide semiconductor thin films for effective gas sensing applications: A comprehensive review and future prospects. Prog. Mater. Sci. 2024, 142, 101222. [Google Scholar] [CrossRef]
- Moumen, A.; Hartiti, B.; Thevenin, P.; Siadat, M. Synthesis and characterization of CuO thin films grown by chemical spray pyrolysis. Opt. Quant. Electron. 2017, 49, 70. [Google Scholar] [CrossRef]
- Morales, J.; Sánchez, L.; Martín, F.; Ramos-Barrado, J.R.; Sánchez, M. Nanostructured CuO thin film electrodes prepared by spray pyrolysis: A simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochim. Acta 2004, 49, 4589–4597. [Google Scholar] [CrossRef]
- Bellal, Y.; Bouhank, A.; Serrar, H.; Tüken, T.; Sığırcık, G. A Copper Oxide (CuO) Thin Films Deposited by Spray Pyrolysis Method. MATEC Web Conf. 2019, 253, 3002. [Google Scholar] [CrossRef]
- Dainius, P.; Gauckler, L.J. Thin Film Deposition Using Spray Pyrolysis. J. Electroceram. 2005, 14, 103–111. [Google Scholar] [CrossRef]
- Alves, A.; Bergmann, C.; Berutti, F. Novel Synthesis and Characterization of Nanostructured Materials; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-41274-5. [Google Scholar]
- Suzuki, I.; Suzuki, S.; Watanabe, T.; Kita, M.; Omata, T. Growth of β-NaGaO2 thin films using ultrasonic spray pyrolysis. J. Asian Ceram. Soc. 2022, 10, 520–529. [Google Scholar] [CrossRef]
- Comini, E.; Faglia, G.; Sberveglieri, G. Solid State Gas Sensing; Springer: Boston, MA, USA, 2009; ISBN 978-0-387-09664-3. [Google Scholar]
- Gudmundsson, J.T. Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. Technol. 2020, 29, 113001. [Google Scholar] [CrossRef]
- Dulmaa, A.; Vrielinck, H.; Khelifi, S.; Depla, D. Sputter deposition of copper oxide films. Appl. Surf. Sci. 2019, 492, 711–717. [Google Scholar] [CrossRef]
- Maurya, D.; Sardarinejad, A.; Alameh, K. Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview. Coatings 2014, 4, 756–771. [Google Scholar] [CrossRef]
- Bashir, A.; Awan, T.I.; Tehseen, A.; Tahir, M.B.; Ijaz, M. Interfaces and surfaces. Chemistry of Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 51–87. ISBN 9780128189085. [Google Scholar]
- Lévy, F. Film Growth and Epitaxy: Methods. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128035818. [Google Scholar]
- Yunus, Y.; Mahadzir, N.A.; Mohamed Ansari, M.N.; Tg Abd Aziz, T.H.; Mohd Afdzaluddin, A.; Anwar, H.; Wang, M.; Ismail, A.G. Review of the Common Deposition Methods of Thin-Film Pentacene, Its Derivatives, and Their Performance. Polymers 2022, 14, 1112. [Google Scholar] [CrossRef]
- Adilov, S.R.; Afanaciev, V.P.; Kashkul, I.N.; Kumekov, S.E.; Mukhin, N.V.; Terukov, E.I. Studying the composition and structure of films obtained by thermal oxidation of copper. Glass Phys. Chem. 2017, 43, 272–275. [Google Scholar] [CrossRef]
- Mahana, D.; Mauraya, A.K.; Singh, P.; Muthusamy, S.K. Evolution of CuO thin films through thermal oxidation of Cu films prepared by physical vapour deposition techniques. Solid State Commun. 2023, 366–367, 115152. [Google Scholar] [CrossRef]
- Solis, J.L.; Saukko, S.; Kish, L.; Granqvist, C.G.; Lantto, V. Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Film. 2001, 391, 255–260. [Google Scholar] [CrossRef]
- Sakai, Y.; Futakuchi, T.; Adachi, M. Preparation of Textured BaTiO3 Thick Films by Screen Printing. Jpn. J. Appl. Phys. 2011, 50, 09NA02. [Google Scholar] [CrossRef]
- Mehmet, M.; Mehmet, E. SnO2 Thick Film Gas Sensor Fabricated by Screen Printing Method for Airplanes. Int. J. Innov. Res. Rev. 2021, 5, 26–30. [Google Scholar]
- Buschow, K.H.J. (Ed.) Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 9780080523583. [Google Scholar]
- Gan, Y.X.; Jayatissa, A.H.; Yu, Z.; Chen, X.; Li, M. Hydrothermal Synthesis of Nanomaterials. J. Nanomater. 2020, 2020, 8917013. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Gopalakrishnan, N. Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing. J. Colloid Interface Sci. 2016, 480, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Lu, C.-H.; Yang, H.-H. Magnetic Nanomaterials for Magnetic Bioanalysis. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 89–109. ISBN 9780128144978. [Google Scholar]
- Niederberger, M.; Pinna, N. Metal Oxide Nanoparticles in Organic Solvents; Springer: London, UK, 2009; ISBN 978-1-84882-670-0. [Google Scholar]
- Salim, E.; Abaas, R.; Mahdi, R.O. A sight of view on hydrothermal synthesis of copper oxide. Eng. Technol. J. 2023, 41, 592–602. [Google Scholar] [CrossRef]
- Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021, 7, 275. [Google Scholar] [CrossRef] [PubMed]
- Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 2021, 5102014. [Google Scholar] [CrossRef]
- Parashar, M.; Shukla, V.K.; Singh, R. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 2020, 31, 3729–3749. [Google Scholar] [CrossRef]
- Armelao, L.; Barreca, D.; Bertapelle, M.; Bottaro, G.; Sada, C.; Tondello, E. A sol–gel approach to nanophasic copper oxide thin films. Thin Solid Film. 2003, 442, 48–52. [Google Scholar] [CrossRef]
- Ray, S.C. Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties. Sol. Energy Mater. Sol. Cells 2001, 68, 307–312. [Google Scholar] [CrossRef]
- Shankar, P.; Bosco Balaguru Rayappan, J. Gas sensing mechanism of metal oxides. The role of ambient atmosphere, type of semiconductor and gases—A review. Sci. Lett. J. 2015, 4, 126. [Google Scholar]
- Saruhan, B.; Lontio Fomekong, R.; Nahirniak, S. Review: Influences of Semiconductor Metal Oxide Properties on Gas Sensing Characteristics. Front. Sens. 2021, 2, 657931. [Google Scholar] [CrossRef]
- Ali, F.A.; Mishra, D.K.; Nayak, R.; Nanda, B. Solid-state gas sensors: Sensing mechanisms and materials. Bull. Mater. Sci. 2022, 45, 15. [Google Scholar] [CrossRef]
- Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B Chem. 2014, 204, 250–272. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, L.; Wang, J.; Zhuang, R.; Mu, P.; Wang, J.; Yan, W. Advances in functional guest materials for resistive gas sensors. RSC Adv. 2022, 12, 24614–24632. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef]
- Degler, D.; Weimar, U.; Barsan, N. Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials. ACS Sens. 2019, 4, 2228–2249. [Google Scholar] [CrossRef]
- Velmathi, G.; Mohan, S.; Henry, R. Analysis of Factors for Improving Functionality of Tin Oxide Gas Sensor. IETE Tech. Rev. 2016, 33, 122–129. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, S.; Du, K. Chemiresistive Gas Sensors Based on Hollow Heterojunction: A Review. Adv. Mater. Inter. 2021, 8, 2002122. [Google Scholar] [CrossRef]
- Samarasekara, P.; Kumara, N.T.R.N.; Yapa, N.U.S. Sputtered copper oxide (CuO) thin films for gas sensor devices. J. Phys. Condens. Matter 2006, 18, 2417–2420. [Google Scholar] [CrossRef]
- Bhowmick, T.; Ghosh, A.; Ambardekar, V.; Nag, S.; Majumder, S.B. Potential of copper oxide thin film-based sensor probe for carbon dioxide gas monitoring. J. Mater. Sci. Mater. Electron. 2022, 33, 26286–26298. [Google Scholar] [CrossRef]
- Tanvir, N.B.; Yurchenko, O.; Urban, G. Optimization Study for Work Function Based CO2 Sensing Using CuO-nanoparticles in Respect to Humidity and Temperature. Procedia Eng. 2015, 120, 667–670. [Google Scholar] [CrossRef]
- Zheng, J.; Feng, C.; Run, S.; Xingjiu, H.; Wei, L.; Jinhuai, L. Study on the Characteristics of Ag Doped CuO-BaTiO3 CO2. Sensors 2002, 2, 366–373. [Google Scholar] [CrossRef]
- Ishihara, T.; Kometani, K.; Hashida, M.; Takita, Y. Application of Mixed Oxide Capacitor to the Selective Carbon Dioxide Sensor: I. Measurement of Carbon Dioxide Sensing Characteristics. J. Electrochem. Soc. 1991, 138, 173–176. [Google Scholar] [CrossRef]
- Joshi, S.; Antolasic, F.; Sunkara, M.V.; Bhargava, S.K.; Ippolito, S.J. Highly Selective CO2 Gas Sensing Properties of CaO-BaTiO3 Heterostructures Effectuated through Discretely Created n-n Nanointerfaces. ACS Sustain. Chem. Eng. 2018, 6, 4086–4097. [Google Scholar] [CrossRef]
- Herrán, J.; Mandayo, G.G.; Pérez, N.; Castano, E.; Prim, A.; Pellicer, E.; Andreu, T.; Peiro, F.; Cornet, A.; Morante, J.R. On the structural characterization of BaTiO3–CuO as CO2 sensing material. Sens. Actuators B Chem. 2008, 133, 315–320. [Google Scholar] [CrossRef]
- Herrán, J.; Mandayo, G.G.; Castaño, E. Solid state gas sensor for fast carbon dioxide detection. Sens. Actuators B Chem. 2008, 129, 705–709. [Google Scholar] [CrossRef]
- Rudraswamy, S.B.; Bhat, N. Optimization of RF Sputtered Ag-Doped BaTiO3-CuO Mixed Oxide Thin Film as Carbon Dioxide Sensor for Environmental Pollution Monitoring Application. IEEE Sens. J. 2016, 16, 5145–5151. [Google Scholar] [CrossRef]
- Mandayo, G.G.; Herrán, J.; Castro-Hurtado, I.; Castaño, E. Performance of a CO2 impedimetric sensor prototype for air quality monitoring. Sensors 2011, 11, 5047–5057. [Google Scholar] [CrossRef] [PubMed]
- Herrán, J.; Fernández-González, O.; Castro-Hurtado, I.; Romero, T.; Mandayo, G.G.; Castano, E. Photoactivated solid-state gas sensor for carbon dioxide detection at room temperature. Sens. Actuators B Chem. 2010, 149, 368–372. [Google Scholar] [CrossRef]
- Herrán, J.; Mandayo, G.G.; Castano, E. Semiconducting BaTiO3-CuO mixed oxide thin films for CO2 detection. Thin Solid Film. 2009, 517, 6192–6197. [Google Scholar] [CrossRef]
- Herrán, J.; Mandayo, G.G.; Castaño, E. Physical behaviour of BaTiO3–CuO thin-film under carbon dioxide atmospheres. Sens. Actuators B Chem. 2007, 127, 370–375. [Google Scholar] [CrossRef]
- Ostrick, B.; Fleischer, M.; Meixner, H.; Kohl, C.D. Investigation of the reaction mechanisms in work function type sensors at room temperature by studies of the cross-sensitivity to oxygen and water: The carbonate–carbon dioxide system. Sens. Actuators B Chem. 2000, 68, 197–202. [Google Scholar] [CrossRef]
- Brabers, V.A.M. Progress in spinel ferrite research. Handb. Magn. Mater. 1995, 8, 189–324. [Google Scholar] [CrossRef]
- Gadkari, A.B.; Shinde, T.J.; Vasambekar, P.N. Ferrite Gas Sensors. IEEE Sens. J. 2011, 11, 849–861. [Google Scholar] [CrossRef]
- Sumangala, T.P.; Thimont, Y.; Baco-Carles, V.; Presmanes, L.; Bonningue, C.; Pasquet, I.; Tailhades, P.; Barnabé, A. Study on the effect of cuprite content on the electrical and CO2 sensing properties of cuprite-copper ferrite nanopowder composites. J. Alloys Compd. 2017, 695, 937–943. [Google Scholar] [CrossRef]
- Chapelle, A.; El Younsi, I.; Vitale, S.; Thimont, Y.; Nelis, T.; Presmanes, L.; Barnabé, A.; Tailhades, P. Improved semiconducting CuO/CuFe2O4 nanostructured thin films for CO2 gas sensing. Sens. Actuators B Chem. 2014, 204, 407–413. [Google Scholar] [CrossRef]
- Madake, S.B.; Thorat, J.B.; Rajpure, K.Y. Spray deposited multimetal Cu-Ni-Zn ferrite for gas sensing application. Sens. Actuators A Phys. 2021, 331, 112919. [Google Scholar] [CrossRef]
- Rao, P.; Godbole, R.V.; Bhagwat, S. Copper doped nickel ferrite nano-crystalline thin films: A potential gas sensor towards reducing gases. Mater. Chem. Phys. 2016, 171, 260–266. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.; Singh, S.; Tandon, P.; Yadav, R.R. Synthesis, Characterization and Gas Sensing Capability of NixCu1−xFe2O4 (0.0 ≤ x ≤ 0.8) Nanostructures Prepared via Sol–Gel Method. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1392–1403. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.; Singh, S.; Tandon, P.; Yadav, B.C.; Yadav, R.R. Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. J. Alloys Compd. 2015, 618, 475–483. [Google Scholar] [CrossRef]
- Wu, K.; Li, J.; Zhang, C. Zinc ferrite based gas sensors: A review. Ceram. Int. 2019, 45, 11143–11157. [Google Scholar] [CrossRef]
- Madake, S.B.; Hattali, M.R.; Thorat, J.B.; Pedanekar, R.S.; Rajpure, K.Y. Chemiresistive Gas Sensing Properties of Copper Substituted Zinc Ferrite Thin Films Deposited by Spray Pyrolysis. J. Electron. Mater. 2021, 50, 2460–2465. [Google Scholar] [CrossRef]
- Wu, K.; Lu, Y.; Liu, Y.; Liu, Y.; Shen, M.; Debliquy, M.; Zhang, C. Synthesis and acetone sensing properties of copper (Cu2+) substituted zinc ferrite hollow micro-nanospheres. Ceram. Int. 2020, 46, 28835–28843. [Google Scholar] [CrossRef]
- Singh, A.; Singh, S.; Joshi, B.D.; Shukla, A.; Yadav, B.C.; Tandon, P. Synthesis, characterization, magnetic properties and gas sensing applications of ZnxCu1−xFe2O4 (0.0 ≤ x ≤ 0.8) nanocomposites. Mater. Sci. Semicond. Process. 2014, 27, 934–949. [Google Scholar] [CrossRef]
- Ren, H.; Weng, H.; Zhao, P.; Zuo, R.; Lu, X.; Huang, J. Preparation of porous sea-urchin-like CuO/ZnO composite nanostructure consisting of numerous nanowires with improved gas-sensing performance. Front. Mater. Sci. 2022, 16, 220583. [Google Scholar] [CrossRef]
- Musa, A.M.M.; Rasadujjaman, M.; Gafur, M.A.; Jamil, A.T.M.K. Synthesis and characterization of dip-coated ZnO–CuO composite thin film for room-temperature CO2 gas sensing. Thin Solid Film. 2023, 773, 139838. [Google Scholar] [CrossRef]
- Keerthana, S.; Rathnakannan, K. Hierarchical ZnO/CuO nanostructures for room temperature detection of carbon dioxide. J. Alloys Compd. 2022, 897, 162988. [Google Scholar] [CrossRef]
- Nakamura, Y.; Zhuang, H.; Kishimoto, A.; Okada, O.; Yanagida, H. Enhanced CO and CO2 Gas Sensitivity of the CuO/ZnO Heterocontact Made by Quenched CuO Ceramics. J. Electrochem. Soc. 1998, 145, 632–638. [Google Scholar] [CrossRef]
- Bhowmick, T.; Ghosh, A.; Nag, S.; Majumder, S.B. Sensitive and selective CO2 gas sensor based on CuO/ZnO bilayer thin-film architecture. J. Alloys Compd. 2022, 903, 163871. [Google Scholar] [CrossRef]
- Tanvir, N.B.; Yurchenko, O.; Laubender, E.; Pohle, R.; Sicard, O.V.; Urban, G. Zinc peroxide combustion promoter in preparation of CuO layers for conductometric CO2 sensing. Sens. Actuators B Chem. 2018, 257, 1027–1034. [Google Scholar] [CrossRef]
- Keerthana, S.; Rathnakannan, K. Room temperature operated carbon dioxide sensor based on silver doped zinc oxide/cupric oxide nanoflowers. Sens. Actuators B Chem. 2023, 378, 133181. [Google Scholar] [CrossRef]
- Rao, B.M.; Roy, S.C. Anatase TiO2 nanotube arrays with high temperature stability. RSC Adv. 2014, 4, 38133–38139. [Google Scholar] [CrossRef]
- Maziarz, W. TiO2/SnO2 and TiO2/CuO thin film nano-heterostructures as gas sensors. Appl. Surf. Sci. 2019, 480, 361–370. [Google Scholar] [CrossRef]
- Mude, K.M. Study of sensing mechanism of CuO and TiO2 metal oxides for CO2 GAS. Vidyabharati Int. Interdiscip. Res. J. 2012, 12, 78–83. [Google Scholar]
- Masuda, Y. Recent advances in SnO2 nanostructure based gas sensors. Sens. Actuators B Chem. 2022, 364, 131876. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, W.; Li, Q. SnO2 as a gas sensor in detection of volatile organic compounds: A review. Sens. Actuators A Phys. 2022, 346, 113845. [Google Scholar] [CrossRef]
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Xu, J.C.; Hunter, G.W.; Lukco, D.; Liu, C.-C.; Ward, B.J. Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped with Copper Oxide. IEEE Sens. J. 2009, 9, 235–236. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, M. Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens. Actuators B Chem. 2000, 69, 144–152. [Google Scholar] [CrossRef]
- Joshi, S.; Satyanarayana, L.; Manjula, P.; Sunkara, M.V.; Ippolito, S.J. Chemo—Resistive CO2 Gas Sensor Based on CuO-SnO2 Heterojunction Nanocomposite Material. In Proceedings of the 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS 2015), Pune, India, 7–10 March 2015; IEEE Reliability Society. IEEE: Piscataway, NJ, USA, 2015. ISBN 9781467380195. [Google Scholar]
- Vijayakumari, A.M.; Oraon, A.R.; Ahirwar, S.; Kannath, A.; Suja, K.J.; Basu, P.K. Defect state reinforced microwave-grown CuxO/NiO nanostructured matrix engineered for the development of selective CO2 sensor with integrated micro-heater. Sens. Actuators B Chem. 2021, 345, 130391. [Google Scholar] [CrossRef]
- Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in Photocatalysis: A Review. Small 2016, 12, 6640–6696. [Google Scholar] [CrossRef]
- Yoon, H.J.; Jun, D.H.; Yang, J.H.; Zhou, Z.; Yang, S.S.; Cheng, M.M.-C. Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B Chem. 2011, 157, 310–313. [Google Scholar] [CrossRef]
- Lee, K.-J.; Kim, S.-J. Theoretical Investigation of CO2 Adsorption on Graphene. Bull. Korean Chem. Soc. 2013, 34, 3022–3026. [Google Scholar] [CrossRef]
- Keerthana, S.; Rathnakannan, K. Chemiresistive-based carbon dioxide sensor with enhanced sensitivity. J. Mater. Sci. Mater. Electron. 2021, 32, 23513–23521. [Google Scholar] [CrossRef]
- Abdelkarem, K.; Saad, R.; Ahmed, A.M.; Fathy, M.I.; Shaban, M.; Hamdy, H. Efficient room temperature carbon dioxide gas sensor based on barium doped CuO thin films. J. Mater. Sci. 2023, 58, 11568–11584. [Google Scholar] [CrossRef]
- Saad, R.; Ahmed, A.M.; Abdelkarem, K.; Zayed, M.; Faidey, Z.M.; Al-Senani, G.M.; Shaban, M.; Tammam, M.T.; Hamdy, H. SILAR-Deposited CuO Nanostructured Films Doped with Zinc and Sodium for Improved CO2 Gas Detection. Nanomaterials 2023, 13, 2793. [Google Scholar] [CrossRef]
- Lee, J.-S.; Katoch, A.; Kim, J.-H.; Kim, S.S. Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires. Sens. Actuators B Chem. 2016, 222, 307–314. [Google Scholar] [CrossRef]
- Wimmer-Teubenbacher, R.; Sosada-Ludwikowska, F.; Travieso, B.; Defregger, S.; Tokmak, O.; Niehaus, J.; Deluca, M.; Köck, A. CuO Thin Films Functionalized with Gold Nanoparticles for Conductometric Carbon Dioxide Gas Sensing. Chemosensors 2018, 6, 56. [Google Scholar] [CrossRef]
- Tanvir, N.B.; Yurchenko, O.; Wilbertz, C.; Urban, G. Investigation of CO2 reaction with copper oxide nanoparticles for room temperature gas sensing. J. Mater. Chem. A 2016, 4, 5294–5302. [Google Scholar] [CrossRef]
- Naz, S.; Gul, A.; Zia, M. Toxicity of copper oxide nanoparticles: A review study. IET Nanobiotechnol. 2020, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Zúñiga, J.; Bruna, N.; Pérez-Donoso, J.M. Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses. Int. J. Mol. Sci. 2023, 24, 503. [Google Scholar] [CrossRef]
- Ameh, T.; Sayes, C.M. The potential exposure and hazards of copper nanoparticles: A review. Environ. Toxicol. Pharmacol. 2019, 71, 103220. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Möller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
CO2 Concentration (ppm) | Health Effects |
---|---|
<1000 | No effects (normal indoor value) |
1000–2500 | Loss of focus and concentration |
2500–5000 | Tiredness, headache (8 h time weighted average (TWA) of 5000 ppm) |
5000–40,000 | Increased respiration, headache, fatigue, other symptoms |
40,000–100,000 | Immediately dangerous to life or health (IDLH), increased heart rate, loss of consciousness |
>100,000 | Loss of consciousness, risk of death |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maier, C.; Egger, L.; Köck, A.; Reichmann, K. A Review of Gas Sensors for CO2 Based on Copper Oxides and Their Derivatives. Sensors 2024, 24, 5469. https://doi.org/10.3390/s24175469
Maier C, Egger L, Köck A, Reichmann K. A Review of Gas Sensors for CO2 Based on Copper Oxides and Their Derivatives. Sensors. 2024; 24(17):5469. https://doi.org/10.3390/s24175469
Chicago/Turabian StyleMaier, Christian, Larissa Egger, Anton Köck, and Klaus Reichmann. 2024. "A Review of Gas Sensors for CO2 Based on Copper Oxides and Their Derivatives" Sensors 24, no. 17: 5469. https://doi.org/10.3390/s24175469
APA StyleMaier, C., Egger, L., Köck, A., & Reichmann, K. (2024). A Review of Gas Sensors for CO2 Based on Copper Oxides and Their Derivatives. Sensors, 24(17), 5469. https://doi.org/10.3390/s24175469