Fractional Hermite-Hadamard Integral Inequalities for a New Class of Convex Functions
Abstract
:1. Introduction
- (i)
- strictly -convex on if (6) is true as a strict inequality for all and with .
- (ii)
- -concave on , if is -convex on .
- (iii)
- strictly -concave on , if is strictly -convex on .
2. Hermite–Hadamard’s Type Inequalities for -Convex Functions
3. Further Consequences
4. Applications
4.1. The Modified Bessel Functions
4.2. Special Means
- The arithmetic mean:
- The generalized logarithmic mean:
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gavrea, B.; Gavrea, I. On some Ostrowski type inequalities. Gen. Math. 2010, 18, 33–44. [Google Scholar]
- Vivas-Cortez, M.; Abdeljawad, T.; Mohammed, P.O.; Rangel-Oliveros, Y. Simpson’s Integral Inequalities for Twice Differentiable Convex Functions. Math. Probl. Eng. 2020, 2020, 1936461. [Google Scholar] [CrossRef]
- Kaijser, S.; Nikolova, L.; Persson, L.-E.; Wedestig, A. Hardy type inequalities via convexity. Math. Inequal. Appl. 2005, 8, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Gunawan, H.; Eridani. Fractional integrals and generalized Olsen inequalities. Kyungpook Math. J. 2009, 49, 31–39. [Google Scholar] [CrossRef]
- Sawano, Y.; Wadade, H. On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space. J. Fourier Anal. Appl. 2013, 19, 20–47. [Google Scholar] [CrossRef]
- Kunt, M.; Iscan, I. Hermite–Hadamard–Fejér type inequalities for p-convex functions. Arab J. Math. Sci. 2017, 23, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Alp, N.; Sarıkaya, M.Z.; Kunt, M.; Iscan, I. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Sci. B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Footscray, Australia, 2000. [Google Scholar]
- Ozdemir, M.E.; Avci, M.; Kavurmaci, H. Hermite–Hadamard-type inequalities via (α,m)-convexity. Comput. Math. Appl. 2011, 61, 2614–2620. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Mohammed, P. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Meth. Appl. Sci. 2020, 1–18. [Google Scholar] [CrossRef]
- Mohammed, P.O. Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates. J. King Saud Univ. Sci. 2018, 30, 258–262. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Mohammed, P.O.; Kashuri, A. New Modified Conformable Fractional Integral Inequalities of Hermite-Hadamard Type with Applications. J. Funct. Space 2020, 2020, 4352357. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the Generalized Hermite–Hadamard Inequalities via the Tempered Fractional Integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Mohammed, P.O.; Zeng, S. Inequalities of trapezoidal type involving generalized fractional integrals. Alex. Eng. J. 2020. [Google Scholar] [CrossRef]
- Baleanu, D.; Mohammed, P.O.; Vivas-Cortez, M.; Rangel-Oliveros, Y. Some modifications in conformable fractional integral inequalities. Adv. Differ. Equ. 2020, 2020, 374. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for F-convex function involving fractional integrals. J. Inequal. Appl. 2018, 2018, 359. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function. Open Math. 2020, 18, 794–806. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 2020, 372, 112740. [Google Scholar] [CrossRef]
- Mohammed, P.O. On New Trapezoid Type Inequalities for h-convex Functions via Generalized Fractional Integral. Turk. J. Anal. Number. Theory 2018, 6, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, P.O. Inequalities of Type Hermite-Hadamard for Fractional Integrals via Differentiable Convex Functions. Turk. J. Anal. Number. Theory 2016, 4, 135–139. [Google Scholar]
- Qi, F.; Mohammed, P.O.; Yao, J.C.; Yao, Y.H. Generalized fractional integral inequalities of Hermite–Hadamard type for (α,m)-convex functions. J. Inequal. Appl. 2019, 2019, 135. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, P.O. Fractional integral inequalities of Hermite-Hadamard type for convex functions with respect to a monotone function. arXiv 2020, arXiv:2005.00588. [Google Scholar]
- Mohammed, P.O. Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function. Math. Meth. Appl. Sci. 2019, 1–11. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Brevik, I. A New Version of the Hermite–Hadamard Inequality for Riemann-Liouville Fractional Integrals. Symmetry 2020, 12, 610. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Awan, M.U.; Noor, M.A.; Noor, K.I.; Iftikhar, S. On a new class of convex functions and integral inequalities. J. Inequal. Appl. 2019, 2019, 131. [Google Scholar] [CrossRef] [Green Version]
- Osler, T.J. The Fractional Derivative of a Composite Function. SIAM J. Math. Anal. 1970, 1, 288–293. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, E.C. On the Ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, P.O.; Abdeljawad, T.; Zeng, S.; Kashuri, A. Fractional Hermite-Hadamard Integral Inequalities for a New Class of Convex Functions. Symmetry 2020, 12, 1485. https://doi.org/10.3390/sym12091485
Mohammed PO, Abdeljawad T, Zeng S, Kashuri A. Fractional Hermite-Hadamard Integral Inequalities for a New Class of Convex Functions. Symmetry. 2020; 12(9):1485. https://doi.org/10.3390/sym12091485
Chicago/Turabian StyleMohammed, Pshtiwan Othman, Thabet Abdeljawad, Shengda Zeng, and Artion Kashuri. 2020. "Fractional Hermite-Hadamard Integral Inequalities for a New Class of Convex Functions" Symmetry 12, no. 9: 1485. https://doi.org/10.3390/sym12091485