Fractional Reverse Coposn’s Inequalities via Conformable Calculus on Time Scales
Abstract
:1. Introduction
2. Basic Concepts
- (i)
- The is conformable -fractional derivative and
- (ii)
- For , then -fractional differentiable and
- (iii)
- If v and are -fractional differentiable, then is a -fractionald differentiable and
- (iv)
- If v is -fractional differentiable, then is -fractional differentiable with:
- (v)
- If v and are -fractional differentiable, then is -fractional differentiable with:
- (vi)
- (vii)
- (viii)
- (ix)
- (x)
3. Results
Applications
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abd El-Hamid, H.A.; Rezk, H.M.; Ahmed, A.M.; AlNemer, G.; Zakarya, M.; El Saify, H.A. Dynamic inequalities in quotients with general kernels and measaures. J. Funct. Spaces 2020, 2020, 5417084. [Google Scholar] [CrossRef]
- Ahmed, A.M.; AlNemer, G.; Zakarya, M.; Rezk, H.M. Some dynamic inequalities of Hilbert’s Type. J. Funct. Spaces 2020, 2020, 4976050. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.M.; Saker, S.H.; Kenawy, M.R.; Rezk, H.M. Lower bounds on a generalization of Gesaro operator on time scale. J. DCDIS Ser. A 2020. accepted. [Google Scholar]
- AlNemer, G.; Zakarya, M.; Abd El-Hamid, H.A.; Agrwal, P.; Rezk, H.M. Some dynamic Hilbert’s-type, inequalities on time scales. Symmetry 2020, 12, 1410. [Google Scholar] [CrossRef]
- AlNemer, G.; Zakarya, M.; El-Hamid, H.A.; Kenawy, M.; Rezk, H. Dynamic Hardy-type inequalities with non-conjugate parameters. Alex. Eng. J. 2020, 59, 4523–4532. [Google Scholar] [CrossRef]
- Benkhettou, N.; Hassani, S.; Torres, D.F. A conformable fractional calculus on arbitrary time scales. J. King Saud Univ. Sci. 2016, 28, 93–98. [Google Scholar] [CrossRef]
- Bennett, G. Some elementary inequalities. Q. J. Math. 1987, 38, 401–425. [Google Scholar] [CrossRef]
- Bemmett, G. Some elementary inequalities II. Q. J. Math. 1988, 39, 385–400. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Inroduction with Applications; Birkhause: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equation on Time Scales; Birkhause: Boston, MA, USA, 2003. [Google Scholar]
- Copson, E.T. Note on series of positive terms. J. Lond. Math. Soc. 1928, 3, 49–51. [Google Scholar] [CrossRef]
- Copson, E.T. Some integral inequalities. Prof. R. Soc. Edinburg Sect. A Math. 1976, 75, 157–164. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on a theorem of Hilbert. Math. Z. 1920, 6, 314–317. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on some points in the integral calculus, LX. An inequality between integrals. Mass. Math. 1925, 54, 150–156. [Google Scholar]
- Leindler, L. Generalization of inequalities of Hardy and Littlewood. Acta Sci. Math. 1970, 31, 285–297. [Google Scholar]
- Leindler, L. Some inequalities pertaining to Bennetts results. Acta Sci. Math. 1993, 58, 261–269. [Google Scholar]
- Nwaeze, E.R.; Torres, D.F.M. Chain rules and inequalities for the BHT fractional calculus on arbitrary timescales. Arab. J. Math. 2017, 6, 13–20. [Google Scholar] [CrossRef] [Green Version]
- O’Regan, D.; Rezk, H.M.; Saker, S.H. Some dynamic inequalities involving Hilbert and Hardy-Hilbert operators with kernels. Results Math. 2018, 73, 146. [Google Scholar] [CrossRef]
- Rezk, H.M.; El-Hamid, H.A.A.; Ahmed, A.M.; AlNemer, G.; Zakarya, M. Inequalities of Hardy type via superquadratic functions with general kernels and measures for several variables on time scales. J. Funct. Spaces 2020, 2020, 6427378. [Google Scholar] [CrossRef]
- Rezk, H.M.; AlNemer, G.; El-Hamid, H.A.A.; Abdel-Aty, A.-H.; Nisar, K.S.; Zakarya, M. Hilbert-type inequalities for time scale nabla calculus. Adv. Differ. Equ. 2020, 2020, 3079. [Google Scholar] [CrossRef]
- Saker, S.H.; O’Regan, D.; Agarwal, R.P. Converses of Copson’s inequalities on time scales. J. Math. Inequal. Appl. 2015, 18, 241–254. [Google Scholar] [CrossRef]
- Saker, S.H.; Ahmed, A.M.; Rezk, H.M.; O’Regan, D.; Agarwal, R.P. New Hilbert’s dynamic inequalities on time scale. J. Math. Inequal. Appl. 2017, 20, 1017–1039. [Google Scholar]
- Saker, S.H.; El-Deeb, A.A.; Rezk, H.M.; Agarwal, R.P. On Hilbert’s inequality on time scales. Appl. Anal. Discret. Math. 2017, 11, 399–423. [Google Scholar] [CrossRef]
- Saker, S.H.; Rezk, H.M.; O’Regan, D.; Agarwal, R.P. A variety of inverse Hilbert type inequality on time scales. J. DCDIS Ser. A 2017, 24, 347–373. [Google Scholar]
- Saker, S.H.; Rabie, S.; AlNemer, G.; Zakarya, M. On structure of discrete Muchenhoupt and discrete Gehring classes. J. Inequal. Appl. 2020, 233, 1–18. [Google Scholar] [CrossRef]
- Saker, S.H.; Sayed, A.; AlNemer, G.; Zakarya, M. Half-linear dynamic equations and investigating weighted Hardy and Copson inequalities. Adv. Differ. Equ. 2020, 519, 1–19. [Google Scholar] [CrossRef]
- Saker, S.H.; Rezk, H.M.; Krnić, M. More accurate dynamic Hardy-type inequalities obtained via superquadraticity. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 2691–2713. [Google Scholar] [CrossRef]
- Saker, S.H.; Rezk, H.M.; Abohela, I.; Baleanu, D. Refinement multidimensional dynamic inequalities with general kernels and measures. J. Inequal. Appl. 2019, 2019, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Saker, S.; Kenawy, M.; AlNemer, G.; Zakarya, M. Some fractional dynamic inequalities of Hardy’s type via conformable calculus. Mathematics 2020, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Zakarya, M.; Abdd El-Hamid, H.A.; AlNemer, G.; Rezk, H.M. More on Hölder’s inequality and it’s reverse via the diamond-alpha integral. Symmetry 2020, 12, 1716. [Google Scholar] [CrossRef]
- Bogdan, K.; Dyda, B. The best constant in a fractional Hardy inequality. Math. Nachr. 2011, 284, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Jleli, M.; Samet, B. Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Inequal. Appl. 2015, 18, 443–451. [Google Scholar] [CrossRef]
- Yildiz, C.; Ozdemir, M.E.; Onelan, H.K. Fractional integral inequalities for different functions. New Trends Math. Sci. 2015, 3, 110–117. [Google Scholar]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakarya, M.; Altanji, M.; AlNemer, G.; Abd El-Hamid, H.A.; Cesarano, C.; M. Rezk, H. Fractional Reverse Coposn’s Inequalities via Conformable Calculus on Time Scales. Symmetry 2021, 13, 542. https://doi.org/10.3390/sym13040542
Zakarya M, Altanji M, AlNemer G, Abd El-Hamid HA, Cesarano C, M. Rezk H. Fractional Reverse Coposn’s Inequalities via Conformable Calculus on Time Scales. Symmetry. 2021; 13(4):542. https://doi.org/10.3390/sym13040542
Chicago/Turabian StyleZakarya, Mohammed, Mohamed Altanji, Ghada AlNemer, Hoda A. Abd El-Hamid, Clemente Cesarano, and Haytham M. Rezk. 2021. "Fractional Reverse Coposn’s Inequalities via Conformable Calculus on Time Scales" Symmetry 13, no. 4: 542. https://doi.org/10.3390/sym13040542
APA StyleZakarya, M., Altanji, M., AlNemer, G., Abd El-Hamid, H. A., Cesarano, C., & M. Rezk, H. (2021). Fractional Reverse Coposn’s Inequalities via Conformable Calculus on Time Scales. Symmetry, 13(4), 542. https://doi.org/10.3390/sym13040542