Rapid Electromagnetic Modeling and Simulation of Eddy Current NDE by MLKD-ACA Algorithm with Integral Kernel Truncations
Abstract
:1. Introduction
2. Description of MLKD-ACA with Kernel Truncations
2.1. Multilevel Partition
2.2. MLKD Algorithm
2.3. MLACA Algorithm with Kernel Truncations
3. Numerical Experiments
3.1. Coil with Finite Cross Section Placing above a Conductive Plate
3.2. Single Turn Coil Placing above a Conductive Sphere
3.3. Coil with Finite Cross Section Placing above a Conductive Plate with Surface Slot
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, M.; Meng, X.; Huang, R.; Chen, L.; Tang, Z.; Li, J.; Peyton, A.; Yin, W. Determination of surface crack orientation based on thin-skin regime using triple-coil drive–pickup eddy-current sensor. IEEE Trans. Instrum. Meas. 2020, 70, 1–9. [Google Scholar] [CrossRef]
- Bao, Y.; Song, J.M. Analysis of electromagnetic non-destructive evaluation modelling using Stratton-Chu formulation-based fast algorithm. Philos. Trans. R. Soc. A 2020, 378, 20190583. [Google Scholar] [CrossRef] [PubMed]
- Pichenot, G.; Buvat, F.; Hristoforou, E. Eddy current modelling for nondestructive testing. J. Nondestruct. Test. 2003, 8, 1–5. [Google Scholar]
- Gilles-Pascaud, C.; Pichenot, G.; Premel, D.; Reboud, C.; Skarlatos, A. Modelling of eddy current inspections with CIVA. In Proceedings of the 17th World Conference on Nondestructive Testing, Shanghai, China, 25 October 2008. [Google Scholar]
- Yang, M. Efficient Method for Solving Boundary Integral Equation in Diffusive Scalar Problem and Eddy Current Nondestructive Evaluation. Ph.D. Dissertation, Iowa State University, Ames, IA, USA, 2010. [Google Scholar]
- Chew, W.C.; Tong, M.S.; Hu, B. Integral Equation Methods for Electromagnetic and Elastic Waves, 1st ed.; Morgan & Claypool: London, UK, 2008; pp. 107–160. [Google Scholar]
- Rubinacci, G.; Tamburrino, A.; Ventre, S.; Villone, F. A fast 3-D multipole method for eddy-current computation. IEEE Trans. Mag. 2004, 40, 1290–1293. [Google Scholar] [CrossRef]
- Song, J.M.; Lu, C.-C.; Chew, W.C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans. Antennas Propag. 1997, 45, 1488–1493. [Google Scholar] [CrossRef] [Green Version]
- Bebendorf, M. Approximation of boundary element matrices. Numer. Math. 2000, 86, 565–589. [Google Scholar] [CrossRef]
- Bao, Y.; Liu, Z.W.; Song, J. Adaptive cross approximation algorithm for accelerating BEM in eddy current nondestructive evaluation. J. Nondestruct. Eval. 2018, 37, 68. [Google Scholar] [CrossRef]
- Bao, Y.; Liu, Z.W.; Bowler, J.R.; Song, J. Multilevel adaptive cross approximation for efficient modeling of 3D arbitrary shaped eddy current NDE problems. NDTE Int. 2019, 104, 1–9. [Google Scholar] [CrossRef]
- Tamburrino, A.; Ventre, S.; Rubinacci, G. A FFT integral formulation using edge-elements for eddy current testing. Int. J. Appl. Electromag. Mech. 2000, 11, 141–162. [Google Scholar] [CrossRef]
- Hackbusch, W. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices. Computing 1999, 62, 89–108. [Google Scholar] [CrossRef]
- Chai, W.W.; Jiao, D. An H2-matrix-based integral-equation solver of reduced complexity and controlled accuracy for solving electrodynamic problems. IEEE Trans. Antennas Propag. 2009, 57, 3147–3159. [Google Scholar] [CrossRef]
- Bao, Y.; Wan, T.; Liu, Z.; Bowler, J.R.; Song, J. Integral equation fast solver with truncated and degenerated kernel for computing flaw signals in eddy current non-destructive testing. NDT E Int. 2021, 124, 102544. [Google Scholar] [CrossRef]
- Stratton, J.A. Electromagnetic Theory; McGraw-Hill: New York, NY, USA, 1941. [Google Scholar]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 1986, 7, 856–869. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.F.; Peterson, A.F.; Mittra, R. A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields. IEEE Trans. Antennas Propag. 1989, 37, 1490–1493. [Google Scholar] [CrossRef]
- Rao, S.M.; Wilton, D.R.; Glisson, A. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 1982, 30, 409–428. [Google Scholar] [CrossRef] [Green Version]
- Tamayo, J.M.; Heldring, A.; Rius, J.M. Multilevel adaptive cross approximation (MLACA). IEEE Trans. Antennas Propag. 2011, 59, 4600–4608. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.L.; Gu, C.Q.; Ding, J.; Li, Z.; Niu, Z. Multilevel fast adaptive cross approximation algorithm with characteristic basis functions. IEEE Trans. Antennas Propag. 2015, 63, 3994–4002. [Google Scholar] [CrossRef]
- Gibson, W.C. Efficient solution of electromagnetic scattering problems using multilevel adaptive cross approximation and LU factorization. IEEE Trans. Antennas Propag. 2020, 68, 3815–3823. [Google Scholar] [CrossRef]
- Nel, B.A.P.; Botha, M.M. An efficient MLACA-SVD solver for superconducting integrated circuit analysis. IEEE Trans. Appl. Supercond. 2019, 29, 1303301. [Google Scholar] [CrossRef]
- Heldring, A.; Ubeda, E.; Rius, J.M. Improving the accuracy of the adaptive cross approximation with a convergence criterion based on random sampling. IEEE Trans. Antennas Propag. 2021, 69, 347–355. [Google Scholar] [CrossRef]
- Liu, Y.; Sid-Lakhdar, W.; Rebrova, E.; Ghysels, P.; Li, X.S. A parallel hierarchical blocked adaptive cross approximation algorithm. Int. J. High Perform. Comput. Appl. 2022, 34, 394–408. [Google Scholar] [CrossRef]
- Auld, B.A.; Moulder, J.C. Review of advances in quantitative eddy current nondestructive evaluation. J. Nondestruct. Eval. 1999, 18, 3–36. [Google Scholar] [CrossRef]
- Theodoulidis, T.P.; Bowler, J.R. Eddy current coil interaction with a right-angled conductive wedge. Proc. R. Soc. 2005, 461, 3123–3139. [Google Scholar] [CrossRef]
- Dodd, C.V.; Deeds, W.E. Analytical solutions to eddy-current probe-coil problems. J. Appl. Phys. 1968, 39, 2829–2838. [Google Scholar] [CrossRef] [Green Version]
- Antimirov, M.Y.; Kolyshkin, A.A.; Vaillancourt, R. Mathematical Models for Eddy Current Testing; Les Publications CRM: Montreal, QC, Canada, 1997; pp. 107–114. [Google Scholar]
- Bao, Y.; Song, J.M. Multilevel kernel degeneration–adaptive cross approximation method to model eddy current NDE problems. J. Nondestruct. Eval. 2022, 41, 17. [Google Scholar] [CrossRef]
- Bao, Y.; Liu, Z.W.; Bowler, J.R.; Song, J. Nested kernel degeneration-based boundary element method solver for rapid computation of eddy current signals. NDTE Int. 2022, 128, 102633. [Google Scholar] [CrossRef]
- Sabbagh, H.A.; Burke, S.K. Benchmark problems in eddy-current NDE. In Proceedings of the Review of Progress in Quantitative Nondestructive Evaluation, Brunswick, ME, USA, 2 August 1992. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Y.; Liu, Z.; Song, J. Rapid Electromagnetic Modeling and Simulation of Eddy Current NDE by MLKD-ACA Algorithm with Integral Kernel Truncations. Symmetry 2022, 14, 712. https://doi.org/10.3390/sym14040712
Bao Y, Liu Z, Song J. Rapid Electromagnetic Modeling and Simulation of Eddy Current NDE by MLKD-ACA Algorithm with Integral Kernel Truncations. Symmetry. 2022; 14(4):712. https://doi.org/10.3390/sym14040712
Chicago/Turabian StyleBao, Yang, Zhiwei Liu, and Jiming Song. 2022. "Rapid Electromagnetic Modeling and Simulation of Eddy Current NDE by MLKD-ACA Algorithm with Integral Kernel Truncations" Symmetry 14, no. 4: 712. https://doi.org/10.3390/sym14040712