Evaluate Asymmetric Peristaltic Pumping Drug Carrying Image in Biological System: Measure Multiphase Flows in Biomedical Applications
Abstract
:1. Introduction
2. Formulation of the Problem
3. Solution of the Problem
4. Results and Discussion
5. Streamlines
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Velocity components | |
Cartesian coordinate | |
C | Volume fraction |
Fluid phase velocity | |
Wave amplitude | |
Drag coefficient | |
c | Wave velocity |
Re | Reynold number |
, | Hight of duct |
Width of duct | |
S | Drag force |
B0 | Magnetic field |
P | Pressure in fixed frame |
S | Stress tensor |
M | Hartmann number |
E1 | Tension wall |
E2 | Mass wall |
E3 | Damping nature |
E4 | Rigidity |
E5 | Elasticity |
Greek symbols | |
Viscosity of the fluid | |
Electric conductivity of the fluid | |
Wavelength | |
’ | Jeffrey parameter |
Fluid density | |
Substantial derivatives | |
Φ | Amplitude ratio |
Subscripts | |
f | Fluid phase |
p | Particulate phase |
References
- Latham, T.W. Fluid Motions in a Peristaltic Pump. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1966. [Google Scholar]
- Sher Akbar, N.; Wahid Butt, A.; Noor, N.F.M. Heat Transfer Analysis on Transport of Copper Nanofluids Due to Metachronal Waves of Cilia. Curr. Nanosci. 2014, 10, 807–815. [Google Scholar] [CrossRef]
- Nadeem, S.; Riaz, A.; Ellahi, R.; Akbar, N.S. Mathematical model for the peristaltic flow of Jeffrey fluid with nanoparticles phenomenon through a rectangular duct. Appl. Nanosci. 2014, 4, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Ellahi, R.; Bhatti, M.M.; Vafai, K. Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct. Int. J. Heat Mass Transf. 2014, 71, 706–719. [Google Scholar] [CrossRef]
- Pozrikidis, C. A study of peristaltic flow. J. Fluid Mech. 1987, 180, 515–527. [Google Scholar] [CrossRef]
- Hina, S.; Mustafa, M.; Hayat, T.; Alsaedi, A. Peristaltic flow of couple-stress fluid with heat and mass transfer: An application in biomedicine. J. Mech. Med. Biol. 2015, 15, 1550042. [Google Scholar] [CrossRef]
- Maiti, S.; Misra, J.C. Peristaltic transport of a couple stress fluid: Some applications to hemodynamics. J. Mech. Med. Biol. 2012, 12, 1250048. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L. Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 1969, 37, 799–825. [Google Scholar] [CrossRef]
- Hayat, T.; Wang, Y.; Hutter, K.; Asghar, S.; Siddiqui, A.M. Peristaltic transport of an Oldroyd-B fluid in a planar channel. Math. Probl. Eng. 2004, 2004, 347–376. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Mahomed, F.M.; Asghar, S. Peristaltic flow of magnetohydrodynamic Johnson-Segalman fluid. Nonlinear Dyn. 2005, 40, 375–385. [Google Scholar] [CrossRef]
- Mekheimer, K. Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys. Lett. A 2008, 372, 4271–4278. [Google Scholar] [CrossRef]
- Mekheimer, K.; Husseny, S.Z.-A.; El Lateef, A.I.A. Effect of Lateral Walls on Peristaltic Flow through an Asymmetric Rectangular Duct. Appl. Bionics Biomech. 2011, 8, 295–308. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Ali, A.; Albarakati, W.A. Analytical wave solutions of the (2+ 1)-dimensional first in-tegro-differential Kadomtsev-Petviashivili hierarchy equation by using modified mathematical methods. Results Phys. 2019, 15, 102775. [Google Scholar] [CrossRef]
- Alharbi, K.A.M.; Ijaz, N.; Riaz, A.; Altaf, F.; Zeeshan, A. On multiphase wavy movements of non-Newtonian Jeffery fluid in a rotat-ing channel with MHD and compliant walls: Exact solutions. Waves Random Complex Media 2022, 1–23. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Zeeshan, A.; Ijaz, N.; Ellahi, R. Heat transfer and inclined magnetic field analysis on peristaltically induced motion of small particles. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 3259–3267. [Google Scholar] [CrossRef]
- Almaleki, D. Stability of the Data-Model Fit over Increasing Levels of Factorial Invariance for Different Features of Design in Factor Analysis. Eng. Technol. Appl. Sci. Res. 2021, 11, 6849–6856. [Google Scholar] [CrossRef]
- Zeeshan, A.; Ijaz, N.; Riaz, A.; Mann, A.B.; Hobiny, A. Flow of nonspherical nanoparticles in electromagnetohydrodynamics of nanofluids through a porous medium between eccentric cylinders. J. Porous Media 2020, 23, 1201–1212. [Google Scholar] [CrossRef]
- Ahmed, I.; Seadawy, A.R.; Lu, D. Kinky breathers, W-shaped and multi-peak solitons interaction in (2 + 1)-dimensional nonlinear Schrödinger equation with Kerr law of nonlinearity. Eur. Phys. J. Plus 2019, 134, 120. [Google Scholar] [CrossRef]
- Zeeshan, A.; Bhatti, M.M.; Ijaz, N.; Beg, O.A.; Kadir, A. Biologically inspired transport of solid spherical nanoparticles in an electri-cally conducting viscoelastic fluid with heat transfer. Therm. Sci. 2020, 24, 1251–1260. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.G.; Makinde, O.D. Magnetohydrodynamic Peristaltic Transport of Jeffrey Nanofluid in an Asymmetric Channel. J. Mol. Liq. 2016, 223, 1242–1248. [Google Scholar] [CrossRef]
- Almaleki, D.A. Accuracy of Data-Model Fit Using Growing Levels of Invariance Models. Int. J. Comput. Sci. Netw. Secur. 2021, 21, 157–164. [Google Scholar]
- Ijaz, N.; Zeeshan, A.; Rehman, S.U. Effect of electro-osmosis and mixed convection on nano-bio-fluid with non-spherical particles in a curved channel. Mech. Ind. 2018, 19, 108. [Google Scholar] [CrossRef]
- Srivastava, V.; Saxena, M. Two-layered model of Casson fluid flow through stenotic blood vessels: Applications to the cardiovascular system. J. Biomech. 1994, 27, 921–928. [Google Scholar] [CrossRef]
- Srivastava, V. Particle-fluid suspension model of blood flow through stenotic vessels with applications. Int. J. Bio-Med. Comput. 1995, 38, 141–154. [Google Scholar] [CrossRef]
- Srivastava, V.P.; Saxena, M. A two-fluid model of non-Newtonian blood flow induced by peristaltic waves. Rheol. Acta 1995, 34, 406–414. [Google Scholar] [CrossRef]
- Ali, S.S.; Kaur, R. Exploring the Impact of Technology 4.0 Driven Practice on Warehousing Performance: A Hybrid Approach. Mathematics 2022, 10, 1252. [Google Scholar] [CrossRef]
- Zeeshan, A.; Ijaz, N.; Majeed, A. Analysis of magnetohydrodynamics peristaltic transport of hydrogen bubble in water. Int. J. Hydrog. Energy 2018, 43, 979–985. [Google Scholar] [CrossRef]
- Ali, S.S.; Kaur, R. Effectiveness of corporate social responsibility (CSR) in implementation of social sustainability in warehousing of developing countries: A hybrid approach. J. Clean. Prod. 2021, 324, 129154. [Google Scholar] [CrossRef]
- Mahmoud, S.R.; Afifi, N.A.S.; Al-Isede, H.M. Effect of porous medium and magnetic field on peristaltic transport of a Jeffrey fluid. Int. J. Math. Anal. 2011, 5, 1025–1034. [Google Scholar]
- Khan, S.; Ali, S.S.; Singh, R. Determinants of Remanufacturing Adoption for Circular Economy: A Causal Relationship Evaluation Framework. Appl. Syst. Innov. 2022, 5, 62. [Google Scholar] [CrossRef]
- Mekheimer, K.; Salem, A.; Zaher, A. Peristatcally induced MHD slip flow in a porous medium due to a surface acoustic wavy wall. J. Egypt. Math. Soc. 2014, 22, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Ijaz, N.; Zeeshan, A.; Riaz, A.; Alhodaly, M.S. Transport of drugs using complex peristaltic waves in a biological system. Waves Random Complex Media 2022, 1–16. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Lu, D.; Iqbal, M. Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves. Pramana 2019, 93, 10. [Google Scholar] [CrossRef]
- Zeeshan, A.; Ijaz, N.; Bhatti, M.M. Flow analysis of particulate suspension on an asymmetric peristaltic motion in a curved con-figuration with heat and mass transfer. Mech. Ind. 2018, 19, 401. [Google Scholar] [CrossRef] [Green Version]
- Almaleki, D.A.; Alomrany, A.G. The Effect of Methods of Estimating the Ability on The Accuracy and Items Parameters According to 3PL Model. Int. J. Comput. Sci. Netw. Secur. 2021, 21, 93–102. [Google Scholar]
- Ijaz, N.; Zeeshan, A.; Bhatti, M. Peristaltic propulsion of particulate non-Newtonian Ree-Eyring fluid in a duct through constant magnetic field. Alex. Eng. J. 2018, 57, 1055–1060. [Google Scholar] [CrossRef]
- Nadeem, S.; Akram, S. Pristaltic flow of a Jeffrey fluid in a rectangular duct. Nonlinear Anal. Real World Appl. 2010, 11, 4238–4247. [Google Scholar] [CrossRef]
- Almaleki, D. Examinee characteristics and their impact on the psychometric properties of a multiple-choice test ac-cording to the item response theory (IRT). Eng. Technol. Appl. Sci. Res. 2021, 11, 6889–6901. [Google Scholar] [CrossRef]
- Zeeshan, A.; Ijaz, N.; Bhatti, M.M.; Mann, A. Mathematical study of peristaltic propulsion of solid–liquid multiphase flow with a biorheological fluid as the base fluid in a duct. Chin. J. Phys. 2017, 55, 1596–1604. [Google Scholar] [CrossRef]
- Akram, S.; Athar, M.; Saeed, K.; Umair, M.Y. Nanomaterials effects on induced magnetic field and dou-ble-diffusivity convection on peristaltic transport of Prandtl nanofluids in inclined asymmetric channel. Nanomater. Nanotechnol. 2022, 12, 18479804211048630. [Google Scholar] [CrossRef]
- Kothandapani, M.; Srinivas, S. Peristaltic transport of a Jeffrey fluid under the effectof magnetic field in an asymmetric channel. Int. J. Non-Linear Mech. 2008, 43, 915. [Google Scholar] [CrossRef]
- Hayat, T.; Javed, M.; Ali, N. MHD peristaltic transport of a Jeffery fluid in a channel with complaint walls and porous space. Transp. Porous Media 2008, 74, 259–274. [Google Scholar] [CrossRef]
- Ellahi, R.; Hussain, F. Simultaneous effects of MHD and partial slip on peristaltic flow of Jeffery fluid in a rectangular duct. J. Magn. Magn. Mater. 2015, 393, 284–292. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, N.; Ijaz, N.; Riaz, A.; Tag El-Din, E.M.; Ali, S.S. Evaluate Asymmetric Peristaltic Pumping Drug Carrying Image in Biological System: Measure Multiphase Flows in Biomedical Applications. Symmetry 2022, 14, 2437. https://doi.org/10.3390/sym14112437
Fatima N, Ijaz N, Riaz A, Tag El-Din EM, Ali SS. Evaluate Asymmetric Peristaltic Pumping Drug Carrying Image in Biological System: Measure Multiphase Flows in Biomedical Applications. Symmetry. 2022; 14(11):2437. https://doi.org/10.3390/sym14112437
Chicago/Turabian StyleFatima, Nahid, Nouman Ijaz, Arshad Riaz, ElSayed M. Tag El-Din, and Sadia Samar Ali. 2022. "Evaluate Asymmetric Peristaltic Pumping Drug Carrying Image in Biological System: Measure Multiphase Flows in Biomedical Applications" Symmetry 14, no. 11: 2437. https://doi.org/10.3390/sym14112437
APA StyleFatima, N., Ijaz, N., Riaz, A., Tag El-Din, E. M., & Ali, S. S. (2022). Evaluate Asymmetric Peristaltic Pumping Drug Carrying Image in Biological System: Measure Multiphase Flows in Biomedical Applications. Symmetry, 14(11), 2437. https://doi.org/10.3390/sym14112437