Some New Hermite–Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals
Abstract
:1. Introduction and Preliminaries
- 1.
- ;
- 2.
- ;
- 3.
- ;
- 4.
- ;
- 5.
- .
- 1.
- ;
- 2.
- ;
- 3.
- ;
- 4.
- ;
- 5.
- and .
2. Main Results
- Taking in Definition 5, we have the notion of multiplicative integral operator given by (1).
- Choosing in Definition 5, we get the notion of multiplicative Riemann–Liouville fractional integral operators given by Definition 4.
3. Further Results
- (a)
- Taking in Lemma 1, we have
- (b)
- Choosing in Lemma 1, we get
4. Numerical and Graphical Computations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadamard, J. Étude sur les propriétés des fonctions entiéres en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Kadakal, H. On refinements of some integral inequalities using improved power-mean integral inequalities. Numer. Methods Partial. Differ. Equ. 2020, 36, 1555–1565. [Google Scholar] [CrossRef]
- Kadakal, H.; Kadakal, M.; İşcan, İ. Some new integral inequalities for N-times differentiable R-convex and R-concave functions. Miskolc Math. Notes 2019, 20, 997–1011. [Google Scholar] [CrossRef]
- Du, T.S.; Awan, M.U.; Kashuri, A.; Zhao, S.S. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity. Appl. Anal. 2021, 100, 642–662. [Google Scholar] [CrossRef]
- Marinescu, D.Ş.; Monea, M. A very short proof of the Hermite–Hadamard inequalities. Am. Math. Mon. 2020, 127, 850–851. [Google Scholar] [CrossRef]
- Abramovich, S.; Persson, L.E. Fejér and Hermite–Hadamard type inequalities for N-quasiconvex functions. Math. Notes 2017, 102, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.X. Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2015, 268, 121–128. [Google Scholar] [CrossRef]
- Delavar, M.R.; Sen, M.D.L. A mapping associated to h-convex version of the Hermite–Hadamard inequality with applications. J. Math. Inequal. 2020, 14, 329–335. [Google Scholar] [CrossRef]
- Dragomir, S.S. Hermite–Hadamard type inequalities for generalized Riemann–Liouville fractional integrals of h-convex functions. Math. Methods Appl. Sci. 2021, 44, 2364–2380. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Latif, M.A.; Alsalami, O.M.; Treanţă, S.; Sudsutad, W.; Kongson, J. Hermite–Hadamard, Fejér and Pachpatte-type integral inequalities for center-radius order interval-valued preinvex functions. Fractal Fract. 2022, 6, 506. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite–Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators. Int. J. Comput. Intell. Syst. 2022, 15, 8. [Google Scholar] [CrossRef]
- Du, T.S.; Wang, H.; Khan, M.A.; Zhang, Y. Certain integral inequalities considering generalized m-convexity on fractal sets and their applications. Fractals 2019, 27, 1950117. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Mohammed, P.O.; Kashuri, A. New modified conformable fractional integral inequalities of Hermite–Hadamard type with applications. J. Funct. Spaces 2020, 2020, 4352357. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Kodamasingh, B.; Kashuri, A.; Aydi, H.; Ameer, E. Ostrowski type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions. J. Inequal. Appl. 2022, 2022, 162. [Google Scholar] [CrossRef]
- Bakherad, M.; Kian, M.; Krnić, M.; Ahmadi, S.A. Interpolating Jensen-type operator inequalities for log-convex and superquadratic functions. Filomat 2018, 13, 4523–4535. [Google Scholar] [CrossRef]
- Budak, H.; Özçelik, K. On Hermite–Hadamard type inequalities for multiplicative fractional integrals. Miskolc Math. Notes 2020, 21, 91–99. [Google Scholar] [CrossRef]
- Bai, Y.M.; Qi, F. Some integral inequalities of the Hermite–Hadamard type for log-convex functions on co-ordinates. J. Nonlinear Sci. Appl. 2016, 9, 5900–5908. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Further inequalities for log-convex functions related to Hermite–Hadamard result. Proyecciones 2019, 38, 267–293. [Google Scholar] [CrossRef]
- Set, E.; Ardiç, M.A. Inequalities for log-convex functions and p-functions. Miskolc Math. Notes 2017, 18, 1033–1041. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.M.; Jiang, W.D. Some properties of log-convex function and applications for the exponential function. Comput. Math. Appl. 2012, 63, 1111–1116. [Google Scholar] [CrossRef] [Green Version]
- Kadakal, H. Hermite-Hadamard type inequalities for subadditive functions. AIMS Math. 2020, 5, 930–939. [Google Scholar] [CrossRef]
- Ali, M.A.; Zhang, Z.Y.; Budak, H.; Sarikaya, M.Z. On Hermite–Hadamard type inequalities for interval-valued multiplicative integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 1428–1448. [Google Scholar]
- Ali, M.A.; Budak, H.; Sarikaya, M.Z.; Zhang, Z.Y. Ostrowski and Simpson type inequalities for multiplicative integrals. Proyecciones 2021, 40, 743–763. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Iftikhar, S.; Ionescu, C. Some integral inequalities for product of harmonic log-convex functions. Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2016, 78, 11–20. [Google Scholar]
- Niculescu, C.P. The Hermite–Hadamard inequality for log-convex functions. Nonlinear Anal. 2012, 75, 662–669. [Google Scholar] [CrossRef]
- Fu, H.; Peng, Y.; Du, T.S. Some inequalities for multiplicative tempered fractional integrals involving the λ-incomplete gamma functions. AIMS Math. 2021, 6, 7456–7478. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Kurpınar, E.M.; Özyapıcı, A. Multiplicative calculus and its applications. J. Math. Anal. Appl. 2008, 337, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Abbas, M.; Zhang, Z.; Sial, I.B.; Arif, R. On integral inequalities for product and quotient of two multiplicatively convex functions. Asian Res. J. Math. 2019, 12, 1–11. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Grossman, M. On geometric fractional calculus. J. Semigroup Theory Appl. 2016, 2016, 2. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Akkurt, A.; Kaçar, Z.; Yildirim, H. Generalized fractional integral inequalities for continuous random variables. J. Probab. Stat. 2015, 2015, 958980. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Anwar, M.S. Modeling and Numerical Simulations of Some Fractional Nonlinear Viscoelastic Flow Problems. Ph.D. Dissertation, Lahore University of Management Sciences, Lahore, Pakistan, 2019. [Google Scholar]
- Anwar, M.S.; Irfan, M.; Hussain, M.; Muhammad, T.; Hussain, Z. Heat Transfer in a Fractional Nanofluid Flow through a Permeable Medium. Math. Probl. Eng. 2022, 2022, 3390478. [Google Scholar] [CrossRef]
- Khan, M.; Rasheed, A.; Anwar, M.S.; Shah, S.T.H. Application of fractional derivatives in a Darcy medium natural convection flow of MHD nanofluid. Ain Shams Eng. J. 2023, 102093. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Obembe, A.D.; Al-Yousef, H.Y.; Hossain, M.E.; Abu-Khamsin, S.A. Fractional derivatives and their applications in reservoir engineering problems: A review. J. Pet. Sci. Eng. 2017, 157, 312–327. [Google Scholar] [CrossRef]
- Hussain, Z.; Alshomrani, A.S.; Muhammad, T.; Anwar, M.S. Entropy analysis in mixed convective flow of hybrid nanofluid subject to melting heat and chemical reactions. Case Stud. Therm. Eng. 2022, 34, 101972. [Google Scholar] [CrossRef]
- Puneeth, V.; Ali, F.; Khan, M.R.; Anwar, M.S.; Ahammad, N.A. Theoretical analysis of the thermal characteristics of Ree–Eyring nanofluid flowing past a stretching sheet due to bioconvection. Biomass Convers. Biorefinery 2022, 1–12. [Google Scholar] [CrossRef]
- Puneeth, V.; Sarpabhushana, M.; Anwar, M.S.; Aly, E.H.; Gireesha, B.J. Impact of bioconvection on the free stream flow of a pseudoplastic nanofluid past a rotating cone. Heat Transf. 2022, 51, 4544–4561. [Google Scholar] [CrossRef]
- Irfan, M.; Sunthrayuth, P.; Ali Pasha, A.; Anwar, M.S.; Azeem Khan, W. Phenomena of thermo-sloutal time’s relaxation in mixed convection Carreau fluid with heat sink/source. Waves Random Complex Media 2022, 1–13. [Google Scholar] [CrossRef]
- Hussain, M.; Ranjha, Q.A.; Anwar, M.S.; Jahan, S.; Ali, A. Eyring-Powell model flow near a convectively heated porous wedge with chemical reaction effects. J. Taiwan Inst. Chem. Eng. 2022, 139, 104510. [Google Scholar] [CrossRef]
- Hussain, Z.; Bashir, Z.; Anwar, M.S. Analysis of nanofluid flow subject to velocity slip and Joule heating over a nonlinear stretching Riga plate with varying thickness. Waves Random Complex Media 2022, 1–17. [Google Scholar] [CrossRef]
- Irfan, M.; Anwar, M.S.; Sardar, H.; Khan, M.; Khan, W.A. Energy transport and effectiveness of thermo-sloutal time’s relaxation theory in Carreau fluid with variable mass diffusivity. Math. Probl. Eng. 2022, 2022, 8208342. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Riemann–Liouville fractional fundamental theorem of calculus and Riemann–Liouville fractional Polya type integral inequality and its extension to Choquet integral setting. Bull. Korean Math. Soc. 2019, 56, 1423–1433. [Google Scholar]
- Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New fractional integral inequalities for convex functions pertaining to Caputo–Fabrizio operator. Fractal Fract. 2022, 6, 171. [Google Scholar] [CrossRef]
- Botmart, T.; Sahoo, S.K.; Kodamasingh, B.; Latif, M.A.; Jarad, F.; Kashuri, A. Certain midpoint-type Fejér and Hermite–Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Math. 2023, 8, 5616–5638. [Google Scholar] [CrossRef]
- Peng, Y.; Fu, H.; Du, T.S. Estimations of bounds on the multiplicative fractional integral inequalities having exponential kernels. Commun. Math. Stat. 2022, 1–25. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Ertuğral, F. On the generalized Hermite–Hadamard inequalities. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2020, 47, 193–213. [Google Scholar]
Values of the Left Term | Values of the Middle Term | Values of the Right Term | |
---|---|---|---|
0.808069 | 0.828942 | 0.833478 | |
0.801869 | 0.819867 | 0.828009 | |
0.797796 | 0.81346 | 0.824413 | |
0.795726 | 0.809497 | 0.822584 | |
0.795513 | 0.807751 | 0.822396 | |
0.796999 | 0.807991 | 0.823709 | |
0.800014 | 0.809991 | 0.826372 | |
0.804385 | 0.813529 | 0.83023 | |
0.809936 | 0.818388 | 0.835123 |
Values of the Left Term | Values of the Right Term | |
---|---|---|
0.765017 | 1.32413 | |
0.601802 | 1.65435 | |
0.487657 | 1.96873 | |
0.407373 | 2.24682 | |
0.350791 | 2.47288 | |
0.311124 | 2.63777 | |
0.283816 | 2.73922 | |
0.2658 | 2.78087 | |
0.254999 | 2.77053 |
Values of the Left Term | Values of the Right Term | |
---|---|---|
0.765017 | 1.24817 | |
0.601802 | 1.50229 | |
0.487657 | 1.7462 | |
0.407373 | 1.96457 | |
0.350791 | 2.14523 | |
0.311124 | 2.28061 | |
0.283816 | 2.36816 | |
0.2658 | 2.40973 | |
0.254999 | 2.41046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashuri, A.; Sahoo, S.K.; Aljuaid, M.; Tariq, M.; De La Sen, M. Some New Hermite–Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals. Symmetry 2023, 15, 868. https://doi.org/10.3390/sym15040868
Kashuri A, Sahoo SK, Aljuaid M, Tariq M, De La Sen M. Some New Hermite–Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals. Symmetry. 2023; 15(4):868. https://doi.org/10.3390/sym15040868
Chicago/Turabian StyleKashuri, Artion, Soubhagya Kumar Sahoo, Munirah Aljuaid, Muhammad Tariq, and Manuel De La Sen. 2023. "Some New Hermite–Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals" Symmetry 15, no. 4: 868. https://doi.org/10.3390/sym15040868
APA StyleKashuri, A., Sahoo, S. K., Aljuaid, M., Tariq, M., & De La Sen, M. (2023). Some New Hermite–Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals. Symmetry, 15(4), 868. https://doi.org/10.3390/sym15040868