Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1702-190
Abstract
Multiple operating conditions in power systems including wind power sources significantly affect the damping of low frequency oscillation modes due to diverse generating and loading conditions, random wind speeds, line outage contingencies, etc. To cope with multiple operating conditions, this paper proposes the new parameter optimization technique of the power system stabilizer (PSS) and the doubly-fed induction generator (DFIG) wind turbine with the power oscillation damper (POD) based on the probability method. Different operating conditions are randomly generated by Monte Carlo simulation. Under the generated operating points, the particle swarm optimization of PSS and POD parameters is carried out to achieve the highest probability that the damping ratios of all oscillation modes are greater than the desired damping ratio for all operating points. Study results in the IEEE New England 39-bus system indicate that under the occurrence of faults, the PSS and POD optimized by the proposed method yield better stabilizing performance than the conventional PSS and POD over a wide range of operating points.
Keywords
Doubly-fed induction generator, power oscillation damper, probability method, power system stabilizer, Monte Carlo simulation
First Page
4354
Last Page
4368
Recommended Citation
THANPISIT, KORAKOT and NGAMROO, ISSARACHAI
(2017)
"Power oscillation damping control by PSS and DFIG wind turbine under multiple operating conditions,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 25:
No.
5, Article 69.
https://doi.org/10.3906/elk-1702-190
Available at:
https://journals.tubitak.gov.tr/elektrik/vol25/iss5/69
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons