New Results on Morris's Observational Theory: The Benefits of Separating the Inseparable

Authors Flavien Breuvart, Giulio Manzonetto, Andrew Polonsky, Domenico Ruoppolo



PDF
Thumbnail PDF

File

LIPIcs.FSCD.2016.15.pdf
  • Filesize: 0.65 MB
  • 18 pages

Document Identifiers

Author Details

Flavien Breuvart
Giulio Manzonetto
Andrew Polonsky
Domenico Ruoppolo

Cite As Get BibTex

Flavien Breuvart, Giulio Manzonetto, Andrew Polonsky, and Domenico Ruoppolo. New Results on Morris's Observational Theory: The Benefits of Separating the Inseparable. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016) https://doi.org/10.4230/LIPIcs.FSCD.2016.15

Abstract

Working in the untyped lambda calculus, we study Morris's
lambda-theory H+. Introduced in 1968, this is the original
extensional theory of contextual equivalence. On the syntactic side,
we show that this lambda-theory validates the omega-rule, thus
settling a long-standing open problem.On the semantic side, we
provide sufficient and necessary conditions for relational graph
models to be fully abstract for H+. We show that a relational graph
model captures Morris's observational preorder exactly when it is
extensional and lambda-Konig. Intuitively, a model is lambda-Konig
when every lambda-definable tree has an infinite path which is
witnessed by some element of the model.

Both results follow from a weak separability property enjoyed by
terms differing only because of some infinite eta-expansion,
which is proved through a refined version of the Böhm-out technique.

Subject Classification

Keywords
  • Lambda calculus
  • relational models
  • fully abstract
  • Böhm-out
  • omega-rule

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. H.P. Barendregt. The lambda-calculus, its syntax and semantics. Number 103 in Studies in Logic and the Foundations of Mathematics. North-Holland, second edition, 1984. Google Scholar
  2. C. Berline. From computation to foundations via functions and application: The λ-calculus and its webbed models. Theoretical Computer Science, 249(1):81-161, 2000. Google Scholar
  3. C. Böhm. Alcune proprietà delle forme β-η-normali nel λ-K-calcolo. Pub. INAC, 696, 1968. Google Scholar
  4. F. Breuvart. On the characterization of models of ℋ^*. In T. Henzinger and D. Miller, editors, Joint Meeting CSL-LICS'14, pages 24:1-24:10. ACM, 2014. Google Scholar
  5. A. Bucciarelli, T. Ehrhard, and G. Manzonetto. Not enough points is enough. In CSL'07, volume 4646 of Lecture Notes in Comput. Sci., pages 298-312. Springer, 2007. Google Scholar
  6. M. Coppo, M. Dezani, and M. Zacchi. Type theories, normal forms and D_∞-lambda-models. Inf. Comput., 72(2):85-116, 1987. Google Scholar
  7. M. Dezani-Ciancaglini and E. Giovannetti. From Bohm’s theorem to observational equivalences: an informal account. Electr. Notes Theor. Comput. Sci., 50(2):83-116, 2001. Google Scholar
  8. T. Ehrhard and L. Regnier. The differential λ-calculus. Th. Comp. Sci., 309(1):1-41, 2003. Google Scholar
  9. T. Ehrhard and L. Regnier. Böhm trees, Krivine’s machine and the Taylor expansion of lambda-terms. In CiE, volume 3988 of Lecture Notes in Comput. Sci., pages 186-197, 2006. URL: http://dx.doi.org/10.1007/11780342_20.
  10. E. Engeler. Algebras and combinators. Algebra Universalis, 13(3):389-392, 1981. Google Scholar
  11. P. Di Gianantonio, G. Franco, and F. Honsell. Game semantics for untyped λ β η-calculus. In TLCA'99, volume 1581 of Lecture Notes in Comput. Sci., pages 114-128. Springer, 1999. Google Scholar
  12. R. Hindley and G. Longo. Lambda-calculus models and extensionality. Z. Math. Logik Grundlag. Math., 26(4):289-310, 1980. Google Scholar
  13. J.M.E. Hyland. A survey of some useful partial order relations on terms of the λ-calculus. In Lambda-Calculus and Comp. Sci. Th., volume 37 of LNCS, pages 83-95. Springer, 1975. Google Scholar
  14. J.M.E. Hyland. A syntactic characterization of the equality in some models for the λ-calculus. J. London Math. Soc. (2), 12(3):361-370, 1975/76. Google Scholar
  15. J.M.E. Hyland, M. Nagayama, J. Power, and G. Rosolini. A category theoretic formulation for Engeler-style models of the untyped λ-calculus. Electr. Notes in TCS, 161:43-57, 2006. Google Scholar
  16. J.-J. Lévy. Le lambda calcul - notes du cours, 2005. In French. URL: http://pauillac.inria.fr/~levy/courses/X/M1/lambda/dea-spp/jjl.pdf.
  17. S. Lusin and A. Salibra. The lattice of λ-theories. J. Log. Comput., 14(3):373-394, 2004. Google Scholar
  18. G. Manzonetto. A general class of models of ℋ^⋆. In MFCS 2009, volume 5734 of Lecture Notes in Comput. Sci., pages 574-586. Springer, 2009. Google Scholar
  19. G. Manzonetto. What is a categorical model of the differential and the resource λ-calculi? Mathematical Structures in Computer Science, 22(3):451-520, 2012. Google Scholar
  20. G. Manzonetto and D. Ruoppolo. Relational graph models, Taylor expansion and extensionality. Electr. Notes Theor. Comput. Sci., 308:245-272, 2014. Google Scholar
  21. J.H. Morris. Lambda calculus models of programming languages. PhD thesis, MIT, 1968. Google Scholar
  22. L. Paolini, M. Piccolo, and S. Ronchi Della Rocca. Essential and relational models. Mathematical Structures in Computer Science, 2015. URL: http://dx.doi.org/10.1017/S0960129515000316.
  23. S. Ronchi Della Rocca and L. Paolini. The Parametric Lambda Calculus - A Metamodel for Computation. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004. Google Scholar
  24. D. Scott. Continuous lattices. In Lawvere, editor, Toposes, Algebraic Geometry and Logic, volume 274 of Lecture Notes in Math., pages 97-136. Springer, 1972. Google Scholar
  25. P. Severi and F.J. de Vries. The infinitary lambda calculus of the infinite eta Böhm trees. To appear in Math. Struct. Comp. Sci., 2016. Google Scholar
  26. C.P. Wadsworth. The relation between computational and denotational properties for Scott’s D_∞-models of the lambda-calculus. SIAM J. Comput., 5(3):488-521, 1976. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail