A Generic Solution to Register-Bounded Synthesis with an Application to Discrete Orders

Authors Léo Exibard, Emmanuel Filiot, Ayrat Khalimov



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2022.122.pdf
  • Filesize: 0.82 MB
  • 19 pages

Document Identifiers

Author Details

Léo Exibard
  • Reykjavik University, Iceland
Emmanuel Filiot
  • Université libre de Bruxelles, Brussels, Belgium
Ayrat Khalimov
  • Université libre de Bruxelles, Brussels, Belgium

Cite As Get BibTex

Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov. A Generic Solution to Register-Bounded Synthesis with an Application to Discrete Orders. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 122:1-122:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.ICALP.2022.122

Abstract

We study synthesis of reactive systems interacting with environments using an infinite data domain. A popular formalism for specifying and modelling such systems is register automata and transducers. They extend finite-state automata by adding registers to store data values and to compare the incoming data values against stored ones. Synthesis from nondeterministic or universal register automata is undecidable in general. However, its register-bounded variant, where additionally a bound on the number of registers in a sought transducer is given, is known to be decidable for universal register automata which can compare data for equality, i.e., for data domain (ℕ, =). This paper extends the decidability border to the domain (ℕ, <) of natural numbers with linear order. Our solution is generic: we define a sufficient condition on data domains (regular approximability) for decidability of register-bounded synthesis. The condition is satisfied by natural data domains like (ℕ, <). It allows one to use simple language-theoretic arguments and avoid technical game-theoretic reasoning. Further, by defining a generic notion of reducibility between data domains, we show the decidability of synthesis in the domain (ℕ^d, <^d) of tuples of numbers equipped with the component-wise partial order and in the domain (Σ^*,≺) of finite strings with the prefix relation.

Subject Classification

ACM Subject Classification
  • Theory of computation → Logic and verification
  • Theory of computation → Automata over infinite objects
  • Theory of computation → Transducers
Keywords
  • Synthesis
  • Register Automata
  • Transducers
  • Ordered Data Domains

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Shaull Almagor and Orna Kupferman. Good-enough synthesis. In Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II, volume 12225 of Lecture Notes in Computer Science, pages 541-563. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-53291-8_28.
  2. Béatrice Bérard, Benedikt Bollig, Mathieu Lehaut, and Nathalie Sznajder. Parameterized synthesis for fragments of first-order logic over data words. In FOSSACS, volume 12077 of Lecture Notes in Computer Science, pages 97-118. Springer, 2020. Google Scholar
  3. Jean Berstel. Transductions and context-free languages, volume 38 of Teubner Studienbücher : Informatik. Teubner, 1979. URL: https://www.worldcat.org/oclc/06364613.
  4. Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph games and reactive synthesis. In Handbook of Model Checking, pages 921-962. Springer, 2018. Google Scholar
  5. M. Bojańczyk and T. Colcombet. Bounds in ω-regularity. In Proc. 21st IEEE Symp. on Logic in Computer Science, pages 285-296, 2006. Google Scholar
  6. Mikołaj Bojańczyk. Slightly infinite sets. Mikołaj Bojańczyk, 2019. URL: https://www.mimuw.edu.pl/~bojan/paper/atom-book.
  7. J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state strategies. Trans. AMS, 138:295-311, 1969. Google Scholar
  8. Alex Bystrov, David John Kinniment, and Alexandre Yakovlev. Priority arbiters. In Proceedings Sixth International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC 2000)(Cat. No. PR00586), pages 128-137. IEEE, 2000. Google Scholar
  9. C.S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in quasipolynomial time. In Proc. 49th ACM Symp. on Theory of Computing, pages 252-263, 2017. Google Scholar
  10. Stéphane Demri and Morgan Deters. Temporal logics on strings with prefix relation. Journal of Logic and Computation, 26(3):989-1017, 2016. Google Scholar
  11. Stéphane Demri and Deepak D'Souza. An automata-theoretic approach to constraint ltl. Information and Computation, 205(3):380-415, 2007. URL: https://doi.org/10.1016/j.ic.2006.09.006.
  12. R. Ehlers, S. Seshia, and H. Kress-Gazit. Synthesis with identifiers. In Proc. 15th Int. Conf. on Verification, Model Checking, and Abstract Interpretation, volume 8318 of Lecture Notes in Computer Science, pages 415-433. Springer, 2014. Google Scholar
  13. Léo Exibard. Automatic Synthesis of Systems with Data. PhD Thesis, Aix-Marseille Université (AMU); Université libre de Bruxelles (ULB), September 2021. URL: http://www.icetcs.ru.is/leoe/files/Exibard_ASSD_SASD.pdf.
  14. Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov. Church Synthesis on Register Automata over Linearly Ordered Data Domains. In Markus Bläser and Benjamin Monmege, editors, STACS 2021, volume 187 of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1-28:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.STACS.2021.28.
  15. Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier. Synthesis of Data Word Transducers. Logical Methods in Computer Science, Volume 17, Issue 1, March 2021. URL: https://doi.org/10.23638/LMCS-17(1:22)2021.
  16. Rachel Faran and Orna Kupferman. On synthesis of specifications with arithmetic. In Alexander Chatzigeorgiou, Riccardo Dondi, Herodotos Herodotou, Christos Kapoutsis, Yannis Manolopoulos, George A. Papadopoulos, and Florian Sikora, editors, SOFSEM 2020: Theory and Practice of Computer Science, pages 161-173, Cham, 2020. Springer International Publishing. Google Scholar
  17. E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for LTL realizability. In Proc. 21st Int. Conf. on Computer Aided Verification, volume 5643, pages 263-277, 2009. Google Scholar
  18. Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. On equivalence and uniformisation problems for finite transducers. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 125:1-125:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.125.
  19. B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito. Temporal stream logic: Synthesis beyond the bools. In Proc. 31st Int. Conf. on Computer Aided Verification, 2019. Google Scholar
  20. O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over infinite alphabets. In Proc. 4th Int. Conf. on Language and Automata Theory and Applications, volume 6031 of Lecture Notes in Computer Science, pages 561-572. Springer, 2010. Google Scholar
  21. Ranjit Jhala, Andreas Podelski, and Andrey Rybalchenko. Predicate abstraction for program verification. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages 447-491. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-10575-8_15.
  22. M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer Science, 134(2):329-363, 1994. Google Scholar
  23. M. Kaminski and D. Zeitlin. Extending finite-memory automata with non-deterministic reassignment. In AFL, pages 195-207, 2008. Google Scholar
  24. A. Khalimov, B. Maderbacher, and R. Bloem. Bounded synthesis of register transducers. In 16th Int. Symp. on Automated Technology for Verification and Analysis, volume 11138 of Lecture Notes in Computer Science, pages 494-510. Springer, 2018. Google Scholar
  25. Ayrat Khalimov and Orna Kupferman. Register-bounded synthesis. In Wan Fokkink and Rob van Glabbeek, editors, 30th International Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of LIPIcs, pages 25:1-25:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2019.25.
  26. O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th IEEE Symp. on Foundations of Computer Science, pages 531-540, 2005. Google Scholar
  27. Benedikt Maderbacher and Roderick Bloem. Reactive synthesis modulo theories using abstraction refinement, 2021. URL: http://arxiv.org/abs/2108.00090.
  28. F. Neven, T. Schwentick, and V. Vianu. Towards regular languages over infinite alphabets. In 26th Int. Symp. on Mathematical Foundations of Computer Science, pages 560-572. Springer-Verlag, 2001. Google Scholar
  29. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity automata. In Proc. 21st IEEE Symp. on Logic in Computer Science, pages 255-264. IEEE press, 2006. Google Scholar
  30. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th ACM Symp. on Principles of Programming Languages, pages 179-190, 1989. Google Scholar
  31. S. Schewe and B. Finkbeiner. Bounded synthesis. In 5th Int. Symp. on Automated Technology for Verification and Analysis, volume 4762 of Lecture Notes in Computer Science, pages 474-488. Springer, 2007. Google Scholar
  32. Luc Segoufin and Szymon Torunczyk. Automata-based verification over linearly ordered data domains. In 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011. Google Scholar
  33. N. Tzevelekos. Fresh-register automata. In Proc. 38th ACM Symp. on Principles of Programming Languages, pages 295-306, New York, NY, USA, 2011. ACM. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail