Neurotransmission: The secret life of memory receptors

The canonical hippocampal NMDA memory receptor also controls the release of the transmitter glutamate and the growth factor BDNF.
  1. Hovy Ho-Wai Wong
  2. Olivier Camiré
  3. P Jesper Sjöström  Is a corresponding author
  1. Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Canada

The human brain contains around 86 billion neurons that communicate with each other through electrical and chemical signals. In the signaling neuron, an electrochemical event known as an action potential, or spike, triggers the release of molecular messengers into the synaptic cleft between two connected neurons. These neurotransmitters are then detected by postsynaptic receptors in the recipient cell. As information in the brain generally flows from the pre- to the postsynaptic neuron, it might seem unlikely to find any neurotransmitter receptors on the presynaptic, transmitting side (Figure 1A).

Presynaptic NMDA receptors regulate synapse-typespecific neurotransmission.

(A) In the textbook view of central neurotransmission, the presynaptic spike (lightning symbol) elicits the release of a neurotransmitter (e.g., glutamate; green), which binds to postsynaptic glutamate receptors such as NMDARs (blue). (B) However, Lituma et al. found that presynaptic NMDARs (red) in hippocampal mossy fibers facilitate the release of glutamate (green) and a growth factor called BDNF (purple), possibly through an influx of calcium ions (Ca2+; question marks). The released glutamate may further activate presynaptic NMDARs (red) in a form of loop.

Yet, early electron microscopy studies revealed that N-methyl-D-aspartate receptors (NMDARs) – which are glutamate receptors and ion channels – are present on both pre- and postsynaptic neurons (e.g., Siegel et al., 1994). NMDARs on postsynaptic cells play an important role in memory formation and Hebbian plasticity — that is, the strengthening of the connections between presynaptic and postsynaptic neurons that are activated together. However, their roles on the presynaptic side remain hotly debated (Wong et al., 2021). Now, in eLife, Pablo Castillo and colleagues at the Albert Einstein College of Medicine and the Universidad Castilla-La Mancha – including Pablo Lituma as first author – report how presynaptically located NMDARs (preNMDARs) are involved in regulating the release of the neurotransmitter glutamate (Figure 1B, Lituma et al., 2021).

Lituma et al. used electron microscopy to examine whether NMDARs are located on the axons of granule cells in the rat hippocampus, known as mossy fibers. These axons help to encode contextual and spatial memory by forming the main information pathway from the dentate gyrus to the CA3 region of the hippocampus, where they contact both excitatory pyramidal neurons and inhibitory neurons (Rebola et al., 2017). The electron microscopy results revealed that 32% of NMDARs were indeed present at the presynaptic sites of neurons.

To identify the purpose of these preNMDARs, the researchers explored low-frequency facilitation, a form of short-term plasticity specific to mossy fiber synapses. As expected, stimulation at 1 Hz temporarily strengthened the mossy fiber connections onto CA3 neurons in mouse brain tissue. However, pharmacologically blocking the receptors, or selectively deleting them through genetic engineering, reduced low-frequency facilitation, indicating an involvement of preNMDARs. Further experiments confirmed that this phenomenon was mediated by preNMDARs present in axons of the transmitting neurons, rather than NMDARs located in their cell bodies or dendrites.

Next, Lituma et al. wanted to test whether preNMDARs could contribute to synaptic facilitation due to high-frequency activity patterns that are more physiologically relevant. Therefore they stimulated mossy fibers using optogenetics and electrophysiological methods to mimic the brief bursts of action potentials seen in granule cells of the intact brain. Indeed, connections between mossy fibers and CA3 neurons were strengthened during these brief bursts. In contrast, removing or blocking preNMDARs reduced this burst-induced facilitation as well as the ability to evoke postsynaptic spiking responses. Thus, preNMDARs are pivotal for boosting synaptic information transfer.

It is possible that preNMDARs could contribute to glutamate release by boosting presynaptic calcium signals. To test this hypothesis, Lituma et al. monitored calcium levels using an imaging technique called 2-photon microscopy. This showed that upon burst firing, only neurons with intact preNMDARs saw boosted calcium signals in their mossy fibers. Additional experiments confirmed that a glutamate-induced rise of calcium ions only took place if NMDARs were present on the mossy fibers. This shows how preNMDARs promote calcium influx into mossy fibers, which could in turn enhance short-term facilitation.

Lituma et al. further speculated that the influx of calcium may additionally trigger the release of brain-derived neurotrophic factor, or BDNF — a growth factor involved in long-term plasticity and memory (Alonso et al., 2002; Kang and Schuman, 1995). Although a direct participation of preNMDAR-mediated calcium signaling remains to be confirmed, preNMDARs were found to be important for BDNF release.

In summary, Lituma et al. have provided compelling evidence that the preNMDARs present in mossy fibers contribute to synaptic information transfer. Interestingly, they also found that this role of preNMDARs was restricted to a subset of mossy fiber synapses, which was determined by the target neuron type: preNMDARs facilitated inputs to CA3 pyramidal neurons and to mossy cells, but not those to inhibitory neurons.

Still, some mysteries remain. For example, NMDARs have a well-known dual need for presynaptically released glutamate and postsynaptic depolarization to activate and elicit the calcium signals that in turn trigger long-term plasticity. This feature makes postsynaptic NMDARs ideal as coincidence detectors in Hebbian learning, which is triggered by simultaneous activity in connected cells. But when situated presynaptically, this dual need seems to make preNMDARs hard to activate — the spike that causes the glutamate release only lasts a millisecond, so the depolarization is long gone by the time preNMDARs become glutamate bound. So how are preNMDARs activated?

One possible answer is high-frequency presynaptic firing, during which subsequent spikes in a burst depolarize glutamate-bound preNMDARs (Abrahamsson et al., 2017). This, however, seems unlikely to happen during low-frequency facilitation at 1 Hz. Alternatively, these preNMDARs may also signal by changing conformation when binding glutamate – without the need for depolarization or calcium flux – similar to postsynaptic NMDARs in the hippocampus and preNMDARs in neocortex (Abrahamsson et al., 2017; Dore et al., 2016).

Intriguingly, flux-independent NMDAR signaling has been linked to Alzheimer’s disease while BDNF has been linked to epilepsy, which could make preNMDARs potential therapeutic targets (McNamara and Scharfman, 2012; Dore et al., 2021). Moreover, the synapse-type-specific regulation could potentially be leveraged for drug specificity. While many questions surrounding preNMDARs are yet to be answered, Lituma et al. provide exciting new evidence to unveil the secret life of NMDARs.

References

  1. Book
    1. McNamara JO
    2. Scharfman HE
    (2012) Temporal Lobe Epilepsy and the BDNF Receptor, TrkB
    In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper's Basic Mechanisms of the Epilepsies. Wiley. pp. 1–46.
    https://doi.org/10.1111/j.1528-1167.2010.02832.x

Article and author information

Author details

  1. Hovy Ho-Wai Wong

    Hovy Ho-Wai Wong is in the Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Canada

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3317-478X
  2. Olivier Camiré

    Olivier Camiré is in the Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Canada

    Competing interests
    No competing interests declared
  3. P Jesper Sjöström

    P Jesper Sjöström is in the Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Canada

    For correspondence
    [email protected]
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7085-2223

Publication history

  1. Version of Record published:

Copyright

© 2021, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,892
    views
  • 238
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hovy Ho-Wai Wong
  2. Olivier Camiré
  3. P Jesper Sjöström
(2021)
Neurotransmission: The secret life of memory receptors
eLife 10:e71178.
https://doi.org/10.7554/eLife.71178

Further reading

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.

    1. Neuroscience
    Jan H Kirchner, Lucas Euler ... Julijana Gjorgjieva
    Research Article

    Dendritic branching and synaptic organization shape single-neuron and network computations. How they emerge simultaneously during brain development as neurons become integrated into functional networks is still not mechanistically understood. Here, we propose a mechanistic model in which dendrite growth and the organization of synapses arise from the interaction of activity-independent cues from potential synaptic partners and local activity-dependent synaptic plasticity. Consistent with experiments, three phases of dendritic growth – overshoot, pruning, and stabilization – emerge naturally in the model. The model generates stellate-like dendritic morphologies that capture several morphological features of biological neurons under normal and perturbed learning rules, reflecting biological variability. Model-generated dendrites have approximately optimal wiring length consistent with experimental measurements. In addition to establishing dendritic morphologies, activity-dependent plasticity rules organize synapses into spatial clusters according to the correlated activity they experience. We demonstrate that a trade-off between activity-dependent and -independent factors influences dendritic growth and synaptic location throughout development, suggesting that early developmental variability can affect mature morphology and synaptic function. Therefore, a single mechanistic model can capture dendritic growth and account for the synaptic organization of correlated inputs during development. Our work suggests concrete mechanistic components underlying the emergence of dendritic morphologies and synaptic formation and removal in function and dysfunction, and provides experimentally testable predictions for the role of individual components.