Ordine
|
Gruppo
|
Subgruppos non-trivial
|
Proprietates
|
Graphico cyclo
|
1
|
|
|
abelian, cyclic
|
|
2
|
|
|
abelian, finite, simple, cyclic, le minus grande gruppo non-trivial
|
|
3
|
|
|
abelian, simple, cyclic
|
|
4
|
|
|
abelian, cyclic
|
|
|
|
abelian, le minus grande gruppo non-cyclic
|
|
5
|
|
|
abelian, simple, cyclic
|
|
6
|
|
,
|
abelian, cyclic
|
|
gruppo symetric
|
,
|
le minus grande gruppo non-ablian
|
|
7
|
|
|
abelian, simple, cyclic
|
|
8
|
|
,
|
abelian, cyclic
|
|
|
, ,
|
abelian
|
|
|
,
|
abelian
|
|
|
, ,
|
non-abelian
|
|
|
,
|
non-abelian; le minus grande gruppo hamiltonian
|
|
9
|
|
|
abelian, cyclic
|
|
|
|
abelian
|
|
10
|
|
,
|
abelian, cyclic
|
|
|
,
|
non-abelian
|
|
11
|
|
|
abelian, simple, cyclic
|
|
12
|
|
, , ,
|
abelian, cyclic
|
|
|
, , ,
|
abelian
|
|
|
, , , ,
|
non-abelian
|
|
|
, ,
|
non-abelian; nulle subgruppo de ordine 6
|
|
|
, , ,
|
non-abelian
|
|
13
|
|
|
abelian, simple, cyclic
|
|
14
|
|
,
|
abelian, cyclic
|
|
|
,
|
non-abelian
|
|
15
|
|
,
|
abelian, cyclic
|
|
16
|
|
, ,
|
abelian, cyclic
|
|
|
, ,
|
abelian
|
|
|
, , , ,
|
abelian
|
|
|
, , , ,
|
abelian
|
|
|
, , ,
|
abelian
|
|
|
, , , ,
|
non-abelian
|
|
|
, , , , ,
|
non-abelian
|
|
|
, , ,
|
non-abelian
|
|
|
, , , ,
|
non-abelian, gruppo hamiltonian
|
|
gruppo quasi-dihedre
|
, , , , ,
|
non-abelian
|
|
M-gruppo (gruppo non-abelian, non-hamiltonian, modular)
|
, , , ,
|
non-abelian
|
|
producto semidirecte
|
, , ,
|
non-abelian
|
|
le gruppo create per matrices de Pauli
|
, , , , ,
|
non-abelian
|
|
|
, , , ,
|
non-abelian
|
|
17
|
|
|
abelian, simple, cyclic
|
|
18
|
|
|
abelian, cyclic
|
|
|
|
abelian
|
|
|
|
non-abelian
|
|
|
|
non-abelian
|
|
con
|
|
non-abelian
|
|
19
|
|
|
abelian, simple, cyclic
|
|
20
|
|
|
abelian, cyclic
|
|
|
|
abelian
|
|
|
|
non-abelian
|
|
gruppo affine (5)
|
|
non-abelian
|
|
|
|
non-abelian
|
|